1,356 research outputs found

    TRA-910: CONNECTED VEHICLE V2I COMMUNICATION APPLICATION TO ENHANCE DRIVER AWARENESS AT SIGNALIZED INTERSECTIONS

    Get PDF
    This study introduces a Vehicle-To-Infrastructure (V2I) architecture to enhance driver awareness at signalized intersections. The main objectives are to (i) provide a proof-of-concept field experiment on the use of V2I communication architecture at a signalized intersection and (ii) evaluate the impact of V2I communication on improving driver performance while crossing the intersection. The proposed V2I communication application will relay an advisory auditory message to the driver regarding the status of the traffic signal. It is expected that driver behaviour is going to change as a result of the in-vehicle audible message. Consequently, the proposed application will collect additional driver performance indicators which include information on average speed, maximum speed, and the acceleration\deceleration profiles. To understand the impact of the advisory message on changing driver behaviour, a comparison was performed between the indicators with and without the in-vehicle message. Driver behavior was investigated under two scenarios, namely; as the driver heads towards a green signal and as the driver heads towards a red signal. For both scenarios, the results show that the average speed of the driver have changed significantly after turning “on” the in-vehicle messages. In addition, the maximum speed distribution shifted towards a lower value indicating decreases in maximum speeds. Moreover, the difference between the acceleration\deceleration profiles near the intersection when driving with and without the message, while heading towards a red signal, was found to be significant. These preliminary results show that the proposed V2I communication application can have promising impacts on improving driver awareness at signalized intersections

    Behavior Classification Algorithms at Intersections

    Get PDF
    The ability to classify driver behavior lays the foundation for more advanced driver assistance systems. Improving safety at intersections has also been identified as high priority due to the large number of intersection related fatalities. This paper focuses on developing algorithms for estimating driver behavior at road intersections. It introduces two classes of algorithms that can classify drivers as compliant or violating. They are based on 1) Support Vector Machines (SVM) and 2) Hidden Markov Models (HMM), two very popular machine learning approaches that have been used extensively for classification in multiple disciplines. The algorithms are successfully validated using naturalistic intersection data collected in Christiansburg, VA, through the US Department of Transportation Cooperative Intersection Collision Avoidance System for Violations (CICAS-V) initiative

    USE OF ADVANCED TRAFFIC SIGNAL STATUS WARNING SYSTEMS FOR

    Get PDF
    Signalized intersections are one of the most complicated and risky locations in the transportation network. If drivers make misjudgments and run a red light by mistake, it may put themselves and other road users at a great risk. To assist drivers in making the right decisions when passing through a signalized intersection, two Advanced Traffic Signal Status Warning Systems (ATSSWS), the Variable Message Sign (VMS) based warning system and the Vehicle to Infrastructure (V2I) based onboard driver warning system, were designed and tested by driving simulator-based experiments. The results revealed that both ATSSWSs can significantly reduce vehicles’ maximum deceleration rates, number of red light violations and other critical events when passing through a signalized intersection. Between these two ATSSWSs, the V2I based onboard driver warning system offers more remarkable improvements in most of cases. In addition, a post survey was conducted to the participated drivers for collecting their feedback on these two ATSSWSs. The survey results showed that most of the drivers believe that these two ATSSWSs are helpful and easy to accommodate

    Virtual and Real Data Populated Intersection Visualization and Testing Tool for V2X Application Development

    Full text link
    The capability afforded by Vehicle-to-Vehicle communication improves situational awareness and provides advantages for many of the traffic problems caused by reduced visibility or No-Line-of-Sight situations, being useful for both autonomous and non-autonomous driving. Additionally, with the traffic light Signal Phase and Timing and Map Datainformation and other advisory information provided with Vehicle-to-Infrastructure (V2I) communication, outcomes which benefit the driver in the long run, such as reducing fuel consumption with speed regulation or decreasing traffic congestion through optimal speed advisories, providing red light violation warning messages and intersection motion assist messages for collision-free intersection maneuvering are all made possible. However, developing applications to obtain these benefits requires an intensive development process within a lengthy testing period. Understanding the intersection better is a large part of this development process. Being able to see what information is broadcasted and how this information translates into the real world would both benefit the development of these highly useful applications and also ensure faster evaluation, when presented visually, using an easy to use and interactive tool. Moreover, recordings of this broadcasted information can be modified and used for repeated testing. Modification of the data makes it flexible and allows us to use it for a variety of testing scenarios at a virtually populated intersection. Based on this premise, this paper presents and demonstrates visualization tools to project SPaT, MAP and Basic Safety Message information into easy to read real-world based graphs. Also, it provides information about the modification of the real-world data to allow creation of a virtually populated intersection, along with the capability to also inject virtual vehicles at this intersection

    Mobile Safety Application for Pedestrians

    Full text link
    Vulnerable Road User (VRU) safety has been an important issue throughout the years as corresponding fatality numbers in traffic have been increasing each year. With the developments in connected vehicle technology, there are new and easier ways of implementing Vehicle to Everything (V2X) communication which can be utilized to provide safety and early warning benefits for VRUs. Mobile phones are one important point of interest with their sensors being increased in quantity and quality and improved in terms of accuracy. Bluetooth and extended Bluetooth technology in mobile phones has enhanced support to carry larger chunks of information to longer distances. The work we discuss in this paper is related to a mobile application that utilizes the mobile phone sensors and Bluetooth communication to implement Personal Safety Message (PSM) broadcast using the SAE J2735 standard to create a Pedestrian to Vehicle (P2V) based safety warning structure. This implementation allows the drivers to receive a warning on their mobile phones and be more careful about the pedestrian intending to cross the street. As a result, the driver has much more time to safely slow down and stop at the intersection. Most importantly, thanks to the wireless nature of Bluetooth connection and long-range mode in Bluetooth 5.0, most dangerous cases such as reduced visibility or No-Line-of-Sight (NLOS) conditions can be remedied

    Safety-critical scenarios and virtual testing procedures for automated cars at road intersections

    Get PDF
    This thesis addresses the problem of road intersection safety with regard to a mixed population of automated vehicles and non-automated road users. The work derives and evaluates safety-critical scenarios at road junctions, which can pose a particular safety problem involving automated cars. A simulation and evaluation framework for car-to-car accidents is presented and demonstrated, which allows examining the safety performance of automated driving systems within those scenarios. Given the recent advancements in automated driving functions, one of the main challenges is safe and efficient operation in complex traffic situations such as road junctions. There is a need for comprehensive testing, either in virtual testing environments or on real-world test tracks. Since it is unrealistic to cover all possible combinations of traffic situations and environment conditions, the challenge is to find the key driving situations to be evaluated at junctions. Against this background, a novel method to derive critical pre-crash scenarios from historical car accident data is presented. It employs k-medoids to cluster historical junction crash data into distinct partitions and then applies the association rules algorithm to each cluster to specify the driving scenarios in more detail. The dataset used consists of 1,056 junction crashes in the UK, which were exported from the in-depth On-the-Spot database. The study resulted in thirteen crash clusters for T-junctions, and six crash clusters for crossroads. Association rules revealed common crash characteristics, which were the basis for the scenario descriptions. As a follow-up to the scenario generation, the thesis further presents a novel, modular framework to transfer the derived collision scenarios to a sub-microscopic traffic simulation environment. The software CarMaker is used with MATLAB/Simulink to simulate realistic models of vehicles, sensors and road environments and is combined with an advanced Monte Carlo method to obtain a representative set of parameter combinations. The analysis of different safety performance indicators computed from the simulation outputs reveals collision and near-miss probabilities for selected scenarios. The usefulness and applicability of the simulation and evaluation framework is demonstrated for a selected junction scenario, where the safety performance of different in-vehicle collision avoidance systems is studied. The results show that the number of collisions and conflicts were reduced to a tenth when adding a crossing and turning assistant to a basic forward collision avoidance system. Due to its modular architecture, the presented framework can be adapted to the individual needs of future users and may be enhanced with customised simulation models. Ultimately, the thesis leads to more efficient workflows when virtually testing automated driving at intersections, as a complement to field operational tests on public roads

    Enhancing Energy Efficiency in Connected Vehicles Via Access to Traffic Signal Information

    Get PDF
    This dissertation expounds on algorithms that can deterministically or proba-bilistically predict the future Signal Phase and Timing (SPAT) of a traffic signal by relying on real-time information from numerous vehicles and traffic infrastructure, historical data, and the computational power of a back-end computing cluster. When made available on an open server, predictive information about traffic signals’ states can be extremely valuable in enabling new fuel efficiency and safety functionalities in connected vehicles: Predictive Cruise Control (PCC) can use the predicted timing plan to calculate globally optimal velocity trajectories that reduce idling time at red signals and therefore improve fuel efficiency and reduce emissions. Advanced engine management strategies can shut down the engine in anticipation of a long idling interval at red. Intersection collision avoidance is another functionality that can benefit from the prediction. We start by exploring a globally optimal velocity planning algorithm through the use of Dynamic Programming (DP), and provide to it three levels of traffic signal information - none, real-time only, and full-future information. The no-information case represents the average driver today, and is expected to provide an energy efficiency minimum or baseline. The full-information case represents a driver with full and exact knowledge of the future red and green times of all the traffic signals along their route, and is expected to provide an energy efficiency maximum. We propose a probabilistic method that seeks to optimize fuel efficiency when only real-time only information is available with the goal of obtaining fuel efficiency as close to the full-future knowledge example as possible. We used Monte-Carlo simulations to evaluate whether the fuel efficiency gains found were merely the result of lucky case studies or whether they were statistically significant; we found in related case studies that up to 16% gains in fuel economy were possible. While these results were promising, the delivery of relevant and accurate future traffic signal phase and timing information remained an unsolved problem. The next step we took was towards building The next step we took was towards building traffic signal prediction models. We took several prescient techniques from the data mining and machine learning fields, and adapted them to our purposes in the exploration of massive amounts of data recorded from traffic Management Centers (TMCs). This manuscript evaluates Transition Probability Modeling, Decision Tree, Multi-Linear Regression, and Neural Network machine learning methods for use in the prediction of traffic Signal Phase and Timing (SPaT) information. signal prediction models. We took several prescient techniques from the data mining and machine learning fields, and adapted them to our purposes in the exploration of massive amounts of data recorded from traffic Management Centers (TMCs). This manuscript evaluates Transition Probability Modeling, Decision Tree, Multi-Linear Regression, and Neural Network machine learning methods for use in the prediction of traffic Signal Phase and Timing (SPaT) information. Finally, we evaluated the influence of providing SPaT data to vehicles. To that end, we investigated both smartphone and in-vehicle proof-of-concepts. An in-vehicle velocity recommendation application has been tested in two cities: San Jose, California and San Francisco, California. The two test locations used two different data sources: data directly from a TMC, and data crowdsourced from public transit bus routes, respectively. A total of 14 test drivers were used to evaluate the effectiveness of the algorithm. In San Jose, the algorithm was found to produce a 8.4% improvement in fuel economy. In San Francisco, traffic conditions were not conducive to testing as the driver was unable to significantly vary his speed to follow the recommendation algorithm, and a negligible difference in fuel economy was observed. However, it did provide an opportunity to evaluate the quality of data coming from the crowdsourced data algorithms. Predicted phase timing com-pared to camera-recorded ground truth data indicated an RMS difference (error) in prediction of approximately 4.1 seconds
    corecore