17,578 research outputs found

    A test problem for visual investigation of high-dimensional multi-objective search

    Get PDF
    An inherent problem in multiobjective optimization is that the visual observation of solution vectors with four or more objectives is infeasible, which brings major difficulties for algorithmic design, examination, and development. This paper presents a test problem, called the Rectangle problem, to aid the visual investigation of high-dimensional multiobjective search. Key features of the Rectangle problem are that the Pareto optimal solutions 1) lie in a rectangle in the two-variable decision space and 2) are similar (in the sense of Euclidean geometry) to their images in the four-dimensional objective space. In this case, it is easy to examine the behavior of objective vectors in terms of both convergence and diversity, by observing their proximity to the optimal rectangle and their distribution in the rectangle, respectively, in the decision space. Fifteen algorithms are investigated. Underperformance of Pareto-based algorithms as well as most state-of-the-art many-objective algorithms indicates that the proposed problem not only is a good tool to help visually understand the behavior of multiobjective search in a high-dimensional objective space but also can be used as a challenging benchmark function to test algorithms' ability in balancing the convergence and diversity of solutions

    Visualising Mutually Non-dominating Solution Sets in Many-objective Optimisation

    Get PDF
    Copyright © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.As many-objective optimization algorithms mature, the problem owner is faced with visualizing and understanding a set of mutually nondominating solutions in a high dimensional space. We review existing methods and present new techniques to address this problem. We address a common problem with the well-known heatmap visualization, since the often arbitrary ordering of rows and columns renders the heatmap unclear, by using spectral seriation to rearrange the solutions and objectives and thus enhance the clarity of the heatmap. A multiobjective evolutionary optimizer is used to further enhance the simultaneous visualization of solutions in objective and parameter space. Two methods for visualizing multiobjective solutions in the plane are introduced. First, we use RadViz and exploit interpretations of barycentric coordinates for convex polygons and simplices to map a mutually nondominating set to the interior of a regular convex polygon in the plane, providing an intuitive representation of the solutions and objectives. Second, we introduce a new measure of the similarity of solutions—the dominance distance—which captures the order relations between solutions. This metric provides an embedding in Euclidean space, which is shown to yield coherent visualizations in two dimensions. The methods are illustrated on standard test problems and data from a benchmark many-objective problem

    Visualising the structure of document search results: A comparison of graph theoretic approaches

    Get PDF
    This is the post-print of the article - Copyright @ 2010 Sage PublicationsPrevious work has shown that distance-similarity visualisation or ‘spatialisation’ can provide a potentially useful context in which to browse the results of a query search, enabling the user to adopt a simple local foraging or ‘cluster growing’ strategy to navigate through the retrieved document set. However, faithfully mapping feature-space models to visual space can be problematic owing to their inherent high dimensionality and non-linearity. Conventional linear approaches to dimension reduction tend to fail at this kind of task, sacrificing local structural in order to preserve a globally optimal mapping. In this paper the clustering performance of a recently proposed algorithm called isometric feature mapping (Isomap), which deals with non-linearity by transforming dissimilarities into geodesic distances, is compared to that of non-metric multidimensional scaling (MDS). Various graph pruning methods, for geodesic distance estimation, are also compared. Results show that Isomap is significantly better at preserving local structural detail than MDS, suggesting it is better suited to cluster growing and other semantic navigation tasks. Moreover, it is shown that applying a minimum-cost graph pruning criterion can provide a parameter-free alternative to the traditional K-neighbour method, resulting in spatial clustering that is equivalent to or better than that achieved using an optimal-K criterion

    Visualising many-objective populations

    Get PDF
    Copyright © 2012 ACM14th International Conference on Genetic and Evolutionary Computation (GECCO 2012), Philadelphia, USA, 7-11 July 2012Optimisation problems often comprise a large set of objectives, and visualising the set of solutions to a problem can help with understanding them, assisting a decision maker. If the set of objectives is larger than three, visualising solutions to the problem is a difficult task. Techniques for visualising high-dimensional data are often difficult to interpret. Conversely, discarding objectives so that the solutions can be visualised in two or three spatial dimensions results in a loss of potentially important information. We demonstrate four methods for visualising many-objective populations, two of which use the complete set of objectives to present solutions in a clear and intuitive fashion and two that compress the objectives of a population into two dimensions whilst minimising the information that is lost. All of the techniques are illustrated on populations of solutions to optimisation test problems

    Visualising high-dimensional Pareto relationships in two-dimensional scatterplots

    Get PDF
    Copyright © 2013 Springer-Verlag Berlin Heidelberg. The final publication is availablevia the DOI in this recordBook title: Evolutionary Multi-Criterion Optimization7th International Conference on Evolutionary Multi-Criterion Optimization (EMO 2013), Sheffield, UK, March 19-22, 2013The codebase for this paper is available at https://github.com/fieldsend/emo_2013_vizIn this paper two novel methods for projecting high dimensional data into two dimensions for visualisation are introduced, which aim to limit the loss of dominance and Pareto shell relationships between solutions to multi-objective optimisation problems. It has already been shown that, in general, it is impossible to completely preserve the dominance relationship when mapping from a higher to a lower dimension – however, approaches that attempt this projection with minimal loss of dominance information are useful for a number of reasons. (1) They may represent the data to the user of a multi-objective optimisation problem in an intuitive fashion, (2) they may help provide insights into the relationships between solutions which are not immediately apparent through other visualisation methods, and (3) they may offer a useful visual medium for interactive optimisation. We are concerned here with examining (1) and (2), and developing relatively rapid methods to achieve visualisations, rather than generating an entirely new search/optimisation problem which has to be solved to achieve the visualisation– which may prove infeasible in an interactive environment for real time use. Results are presented on randomly generated data, and the search population of an optimiser as it progresses. Structural insights into the evolution of a set-based optimiser that can be derived from this visualisation are also discussed

    Visualisation and ordering of many-objective populations

    Get PDF
    Copyright © 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.We introduce novel methods of visualising and ordering multi-and many-objective populations. We compare individuals by the probability that one will beat another in a tournament on a randomly selected objective. This defines a weighted directed graph representing the population. We introduce a novel graphical representation of the many objective population based on Pareto shells. We examine leagues, Pareto shells, preference ordering, average rank, outflow, the stationary distribution and the power index for ordering the population finding that the average rank is equivalent to outflow and that these together with the power index are generally superior. Finally, we show how to seriate objectives to enhance the interpretability of heatmap visualisations
    corecore