2,583 research outputs found

    Assessment of sparse-based inpainting for retinal vessel removal

    Full text link
    [EN] Some important eye diseases, like macular degeneration or diabetic retinopathy, can induce changes visible on the retina, for example as lesions. Segmentation of lesions or extraction of textural features from the fundus images are possible steps towards automatic detection of such diseases which could facilitate screening as well as provide support for clinicians. For the task of detecting significant features, retinal blood vessels are considered as being interference on the retinal images. If these blood vessel structures could be suppressed, it might lead to a more accurate segmentation of retinal lesions as well as a better extraction of textural features to be used for pathology detection. This work proposes the use of sparse representations and dictionary learning techniques for retinal vessel inpainting. The performance of the algorithm is tested for greyscale and RGB images from the DRIVE and STARE public databases, employing different neighbourhoods and sparseness factors. Moreover, a comparison with the most common inpainting family, diffusion-based methods, is carried out. For this purpose, two different ways of assessing the quality of the inpainting are presented and used to evaluate the results of the non-artificial inpainting, i.e. where a reference image does not exist. The results suggest that the use of sparse-based inpainting performs very well for retinal blood vessels removal which will be useful for the future detection and classification of eye diseases. (C) 2017 Elsevier B.V. All rights reserved.This work was supported by NILS Science and Sustainability Programme (014-ABEL-IM-2013) and by the Ministerio de Economia y Competitividad of Spain, Project ACRIMA (TIN2013-46751-R). The work of Adrian Colomer has been supported by the Spanish Government under the FPI Grant BES-2014-067889.Colomer, A.; Naranjo Ornedo, V.; Engan, K.; Skretting, K. (2017). Assessment of sparse-based inpainting for retinal vessel removal. Signal Processing: Image Communication. 59:73-82. https://doi.org/10.1016/j.image.2017.03.018S73825

    Learning GAN-based Foveated Reconstruction to Recover Perceptually Important Image Features

    Get PDF
    A foveated image can be entirely reconstructed from a sparse set of samples distributed according to the retinal sensitivity of the human visual system, which rapidly decreases with increasing eccentricity. The use of Generative Adversarial Networks has recently been shown to be a promising solution for such a task, as they can successfully hallucinate missing image information. As in the case of other supervised learning approaches, the definition of the loss function and the training strategy heavily influence the quality of the output. In this work,we consider the problem of efficiently guiding thetraining of foveated reconstruction techniques such that they are more aware of the capabilities and limitations of the human visual system, and thus can reconstruct visually important image features. Our primary goal is to make the training procedure less sensitive to distortions that humans cannot detect and focus on penalizing perceptually important artifacts. Given the nature of GAN-based solutions, we focus on the sensitivity of human vision to hallucination in case of input samples with different densities. We propose psychophysical experiments, a dataset, and a procedure for training foveated image reconstruction. The proposed strategy renders the generator network flexible by penalizing only perceptually important deviations in the output. As a result, the method emphasized the recovery of perceptually important image features. We evaluated our strategy and compared it with alternative solutions by using a newly trained objective metric, a recent foveated video quality metric, and user experiments. Our evaluations revealed significant improvements in the perceived image reconstruction quality compared with the standard GAN-based training approach
    corecore