4,673 research outputs found

    An Improved Infrared/Visible Fusion for Astronomical Images

    Get PDF
    An undecimated dual tree complex wavelet transform (UDTCWT) based fusion scheme for astronomical visible/IR images is developed. The UDTCWT reduces noise effects and improves object classification due to its inherited shift invariance property. Local standard deviation and distance transforms are used to extract useful information (especially small objects). Simulation results compared with the state-of-the-art fusion techniques illustrate the superiority of proposed scheme in terms of accuracy for most of the cases

    Tensor singular spectral analysis for 3D feature extraction in hyperspectral images.

    Get PDF
    Due to the cubic structure of a hyperspectral image (HSI), how to characterize its spectral and spatial properties in three dimensions is challenging. Conventional spectral-spatial methods usually extract spectral and spatial information separately, ignoring their intrinsic correlations. Recently, some 3D feature extraction methods are developed for the extraction of spectral and spatial features simultaneously, although they rely on local spatial-spectral regions and thus ignore the global spectral similarity and spatial consistency. Meanwhile, some of these methods contain huge model parameters which require a large number of training samples. In this paper, a novel Tensor Singular Spectral Analysis (TensorSSA) method is proposed to extract global and low-rank features of HSI. In TensorSSA, an adaptive embedding operation is first proposed to construct a trajectory tensor corresponding to the entire HSI, which takes full advantage of the spatial similarity and improves the adequate representation of the global low-rank properties of the HSI. Moreover, the obtained trajectory tensor, which contains the global and local spatial and spectral information of the HSI, is decomposed by the Tensor singular value decomposition (t-SVD) to explore its low-rank intrinsic features. Finally, the efficacy of the extracted features is evaluated using the accuracy of image classification with a support vector machine (SVM) classifier. Experimental results on three publicly available datasets have fully demonstrated the superiority of the proposed TensorSSA over a few state-of-the-art 2D/3D feature extraction and deep learning algorithms, even with a limited number of training samples

    Remote sensing image fusion via compressive sensing

    Get PDF
    In this paper, we propose a compressive sensing-based method to pan-sharpen the low-resolution multispectral (LRM) data, with the help of high-resolution panchromatic (HRP) data. In order to successfully implement the compressive sensing theory in pan-sharpening, two requirements should be satisfied: (i) forming a comprehensive dictionary in which the estimated coefficient vectors are sparse; and (ii) there is no correlation between the constructed dictionary and the measurement matrix. To fulfill these, we propose two novel strategies. The first is to construct a dictionary that is trained with patches across different image scales. Patches at different scales or equivalently multiscale patches provide texture atoms without requiring any external database or any prior atoms. The redundancy of the dictionary is removed through K-singular value decomposition (K-SVD). Second, we design an iterative l1-l2 minimization algorithm based on alternating direction method of multipliers (ADMM) to seek the sparse coefficient vectors. The proposed algorithm stacks missing high-resolution multispectral (HRM) data with the captured LRM data, so that the latter is used as a constraint for the estimation of the former during the process of seeking the representation coefficients. Three datasets are used to test the performance of the proposed method. A comparative study between the proposed method and several state-of-the-art ones shows its effectiveness in dealing with complex structures of remote sensing imagery

    GETNET: A General End-to-end Two-dimensional CNN Framework for Hyperspectral Image Change Detection

    Full text link
    Change detection (CD) is an important application of remote sensing, which provides timely change information about large-scale Earth surface. With the emergence of hyperspectral imagery, CD technology has been greatly promoted, as hyperspectral data with the highspectral resolution are capable of detecting finer changes than using the traditional multispectral imagery. Nevertheless, the high dimension of hyperspectral data makes it difficult to implement traditional CD algorithms. Besides, endmember abundance information at subpixel level is often not fully utilized. In order to better handle high dimension problem and explore abundance information, this paper presents a General End-to-end Two-dimensional CNN (GETNET) framework for hyperspectral image change detection (HSI-CD). The main contributions of this work are threefold: 1) Mixed-affinity matrix that integrates subpixel representation is introduced to mine more cross-channel gradient features and fuse multi-source information; 2) 2-D CNN is designed to learn the discriminative features effectively from multi-source data at a higher level and enhance the generalization ability of the proposed CD algorithm; 3) A new HSI-CD data set is designed for the objective comparison of different methods. Experimental results on real hyperspectral data sets demonstrate the proposed method outperforms most of the state-of-the-arts

    Enhanced Singular Value Decomposition based Fusion for Super Resolution Image Reconstruction

    Get PDF
    The singular value decomposition (SVD) plays a very important role in the field of image processing for applications such as feature extraction, image compression, etc. The main objective is to enhance the resolution of the image based on Singular Value Decomposition. The original image and the subsequent sub-pixel shifted image, subjected to image registration is transferred to SVD domain. An enhanced method of choosing the singular values from the SVD domain images to reconstruct a high resolution image using fusion techniques is proposesed. This technique is called as enhanced SVD based fusion. Significant improvement in the performance is observed by applying enhanced SVD method preceding the various interpolation methods which are incorporated. The technique has high advantage and computationally fast which is most needed for satellite imaging, high definition television broadcasting, medical imaging diagnosis, military surveillance, remote sensing etc

    Low-Rank and Sparse Decomposition for Hyperspectral Image Enhancement and Clustering

    Get PDF
    In this dissertation, some new algorithms are developed for hyperspectral imaging analysis enhancement. Tensor data format is applied in hyperspectral dataset sparse and low-rank decomposition, which could enhance the classification and detection performance. And multi-view learning technique is applied in hyperspectral imaging clustering. Furthermore, kernel version of multi-view learning technique has been proposed, which could improve clustering performance. Most of low-rank and sparse decomposition algorithms are based on matrix data format for HSI analysis. As HSI contains high spectral dimensions, tensor based extended low-rank and sparse decomposition (TELRSD) is proposed in this dissertation for better performance of HSI classification with low-rank tensor part, and HSI detection with sparse tensor part. With this tensor based method, HSI is processed in 3D data format, and information between spectral bands and pixels maintain integrated during decomposition process. This proposed algorithm is compared with other state-of-art methods. And the experiment results show that TELRSD has the best performance among all those comparison algorithms. HSI clustering is an unsupervised task, which aims to group pixels into different groups without labeled information. Low-rank sparse subspace clustering (LRSSC) is the most popular algorithms for this clustering task. The spatial-spectral based multi-view low-rank sparse subspace clustering (SSMLC) algorithms is proposed in this dissertation, which extended LRSSC with multi-view learning technique. In this algorithm, spectral and spatial views are created to generate multi-view dataset of HSI, where spectral partition, morphological component analysis (MCA) and principle component analysis (PCA) are applied to create others views. Furthermore, kernel version of SSMLC (k-SSMLC) also has been investigated. The performance of SSMLC and k-SSMLC are compared with sparse subspace clustering (SSC), low-rank sparse subspace clustering (LRSSC), and spectral-spatial sparse subspace clustering (S4C). It has shown that SSMLC could improve the performance of LRSSC, and k-SSMLC has the best performance. The spectral clustering has been proved that it equivalent to non-negative matrix factorization (NMF) problem. In this case, NMF could be applied to the clustering problem. In order to include local and nonlinear features in data source, orthogonal NMF (ONMF), graph-regularized NMF (GNMF) and kernel NMF (k-NMF) has been proposed for better clustering performance. The non-linear orthogonal graph NMF combine both kernel, orthogonal and graph constraints in NMF (k-OGNMF), which push up the clustering performance further. In the HSI domain, kernel multi-view based orthogonal graph NMF (k-MOGNMF) is applied for subspace clustering, where k-OGNMF is extended with multi-view algorithm, and it has better performance and computation efficiency
    • …
    corecore