1,520 research outputs found

    MOT16: A Benchmark for Multi-Object Tracking

    Full text link
    Standardized benchmarks are crucial for the majority of computer vision applications. Although leaderboards and ranking tables should not be over-claimed, benchmarks often provide the most objective measure of performance and are therefore important guides for reseach. Recently, a new benchmark for Multiple Object Tracking, MOTChallenge, was launched with the goal of collecting existing and new data and creating a framework for the standardized evaluation of multiple object tracking methods. The first release of the benchmark focuses on multiple people tracking, since pedestrians are by far the most studied object in the tracking community. This paper accompanies a new release of the MOTChallenge benchmark. Unlike the initial release, all videos of MOT16 have been carefully annotated following a consistent protocol. Moreover, it not only offers a significant increase in the number of labeled boxes, but also provides multiple object classes beside pedestrians and the level of visibility for every single object of interest.Comment: arXiv admin note: substantial text overlap with arXiv:1504.0194

    Review on Computer Vision Techniques in Emergency Situation

    Full text link
    In emergency situations, actions that save lives and limit the impact of hazards are crucial. In order to act, situational awareness is needed to decide what to do. Geolocalized photos and video of the situations as they evolve can be crucial in better understanding them and making decisions faster. Cameras are almost everywhere these days, either in terms of smartphones, installed CCTV cameras, UAVs or others. However, this poses challenges in big data and information overflow. Moreover, most of the time there are no disasters at any given location, so humans aiming to detect sudden situations may not be as alert as needed at any point in time. Consequently, computer vision tools can be an excellent decision support. The number of emergencies where computer vision tools has been considered or used is very wide, and there is a great overlap across related emergency research. Researchers tend to focus on state-of-the-art systems that cover the same emergency as they are studying, obviating important research in other fields. In order to unveil this overlap, the survey is divided along four main axes: the types of emergencies that have been studied in computer vision, the objective that the algorithms can address, the type of hardware needed and the algorithms used. Therefore, this review provides a broad overview of the progress of computer vision covering all sorts of emergencies.Comment: 25 page

    Multiple Object Tracking: A Literature Review

    Full text link
    Multiple Object Tracking (MOT) is an important computer vision problem which has gained increasing attention due to its academic and commercial potential. Although different kinds of approaches have been proposed to tackle this problem, it still remains challenging due to factors like abrupt appearance changes and severe object occlusions. In this work, we contribute the first comprehensive and most recent review on this problem. We inspect the recent advances in various aspects and propose some interesting directions for future research. To the best of our knowledge, there has not been any extensive review on this topic in the community. We endeavor to provide a thorough review on the development of this problem in recent decades. The main contributions of this review are fourfold: 1) Key aspects in a multiple object tracking system, including formulation, categorization, key principles, evaluation of an MOT are discussed. 2) Instead of enumerating individual works, we discuss existing approaches according to various aspects, in each of which methods are divided into different groups and each group is discussed in detail for the principles, advances and drawbacks. 3) We examine experiments of existing publications and summarize results on popular datasets to provide quantitative comparisons. We also point to some interesting discoveries by analyzing these results. 4) We provide a discussion about issues of MOT research, as well as some interesting directions which could possibly become potential research effort in the future

    Tracking the Trackers: An Analysis of the State of the Art in Multiple Object Tracking

    Full text link
    Standardized benchmarks are crucial for the majority of computer vision applications. Although leaderboards and ranking tables should not be over-claimed, benchmarks often provide the most objective measure of performance and are therefore important guides for research. We present a benchmark for Multiple Object Tracking launched in the late 2014, with the goal of creating a framework for the standardized evaluation of multiple object tracking methods. This paper collects the two releases of the benchmark made so far, and provides an in-depth analysis of almost 50 state-of-the-art trackers that were tested on over 11000 frames. We show the current trends and weaknesses of multiple people tracking methods, and provide pointers of what researchers should be focusing on to push the field forward

    MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking

    Full text link
    In the recent past, the computer vision community has developed centralized benchmarks for the performance evaluation of a variety of tasks, including generic object and pedestrian detection, 3D reconstruction, optical flow, single-object short-term tracking, and stereo estimation. Despite potential pitfalls of such benchmarks, they have proved to be extremely helpful to advance the state of the art in the respective area. Interestingly, there has been rather limited work on the standardization of quantitative benchmarks for multiple target tracking. One of the few exceptions is the well-known PETS dataset, targeted primarily at surveillance applications. Despite being widely used, it is often applied inconsistently, for example involving using different subsets of the available data, different ways of training the models, or differing evaluation scripts. This paper describes our work toward a novel multiple object tracking benchmark aimed to address such issues. We discuss the challenges of creating such a framework, collecting existing and new data, gathering state-of-the-art methods to be tested on the datasets, and finally creating a unified evaluation system. With MOTChallenge we aim to pave the way toward a unified evaluation framework for a more meaningful quantification of multi-target tracking

    An equalised global graphical model-based approach for multi-camera object tracking

    Full text link
    Non-overlapping multi-camera visual object tracking typically consists of two steps: single camera object tracking and inter-camera object tracking. Most of tracking methods focus on single camera object tracking, which happens in the same scene, while for real surveillance scenes, inter-camera object tracking is needed and single camera tracking methods can not work effectively. In this paper, we try to improve the overall multi-camera object tracking performance by a global graph model with an improved similarity metric. Our method treats the similarities of single camera tracking and inter-camera tracking differently and obtains the optimization in a global graph model. The results show that our method can work better even in the condition of poor single camera object tracking.Comment: 13 pages, 17 figure

    Play and Learn: Using Video Games to Train Computer Vision Models

    Full text link
    Video games are a compelling source of annotated data as they can readily provide fine-grained groundtruth for diverse tasks. However, it is not clear whether the synthetically generated data has enough resemblance to the real-world images to improve the performance of computer vision models in practice. We present experiments assessing the effectiveness on real-world data of systems trained on synthetic RGB images that are extracted from a video game. We collected over 60000 synthetic samples from a modern video game with similar conditions to the real-world CamVid and Cityscapes datasets. We provide several experiments to demonstrate that the synthetically generated RGB images can be used to improve the performance of deep neural networks on both image segmentation and depth estimation. These results show that a convolutional network trained on synthetic data achieves a similar test error to a network that is trained on real-world data for dense image classification. Furthermore, the synthetically generated RGB images can provide similar or better results compared to the real-world datasets if a simple domain adaptation technique is applied. Our results suggest that collaboration with game developers for an accessible interface to gather data is potentially a fruitful direction for future work in computer vision.Comment: To appear in the British Machine Vision Conference (BMVC), September 2016. -v2: fixed a typo in the reference

    Crowd Management in Open Spaces

    Full text link
    Crowd analysis and management is a challenging problem to ensure public safety and security. For this purpose, many techniques have been proposed to cope with various problems. However, the generalization capabilities of these techniques is limited due to ignoring the fact that the density of crowd changes from low to extreme high depending on the scene under observation. We propose robust feature based approach to deal with the problem of crowd management for people safety and security. We have evaluated our method using a benchmark dataset and have presented details analysis

    Crowded Scene Analysis: A Survey

    Full text link
    Automated scene analysis has been a topic of great interest in computer vision and cognitive science. Recently, with the growth of crowd phenomena in the real world, crowded scene analysis has attracted much attention. However, the visual occlusions and ambiguities in crowded scenes, as well as the complex behaviors and scene semantics, make the analysis a challenging task. In the past few years, an increasing number of works on crowded scene analysis have been reported, covering different aspects including crowd motion pattern learning, crowd behavior and activity analysis, and anomaly detection in crowds. This paper surveys the state-of-the-art techniques on this topic. We first provide the background knowledge and the available features related to crowded scenes. Then, existing models, popular algorithms, evaluation protocols, as well as system performance are provided corresponding to different aspects of crowded scene analysis. We also outline the available datasets for performance evaluation. Finally, some research problems and promising future directions are presented with discussions.Comment: 20 pages in IEEE Transactions on Circuits and Systems for Video Technology, 201

    Learning Discriminative Features for Person Re-Identification

    Get PDF
    For fulfilling the requirements of public safety in modern cities, more and more large-scale surveillance camera systems are deployed, resulting in an enormous amount of visual data. Automatically processing and interpreting these data promote the development and application of visual data analytic technologies. As one of the important research topics in surveillance systems, person re-identification (re-id) aims at retrieving the target person across non-overlapping camera-views that are implemented in a number of distributed space-time locations. It is a fundamental problem for many practical surveillance applications, eg, person search, cross-camera tracking, multi-camera human behavior analysis and prediction, and it received considerable attentions nowadays from both academic and industrial domains. Learning discriminative feature representation is an essential task in person re-id. Although many methodologies have been proposed, discriminative re-id feature extraction is still a challenging problem due to: (1) Intra- and inter-personal variations. The intrinsic properties of the camera deployment in surveillance system lead to various changes in person poses, view-points, illumination conditions etc. This may result in the large intra-personal variations and/or small inter-personal variations, thus incurring problems in matching person images. (2) Domain variations. The domain variations between different datasets give rise to the problem of generalization capability of re-id model. Directly applying a re-id model trained on one dataset to another one usually causes a large performance degradation. (3) Difficulties in data creation and annotation. Existing person re-id methods, especially deep re-id methods, rely mostly on a large set of inter-camera identity labelled training data, requiring a tedious data collection and annotation process. This leads to poor scalability in practical person re-id applications. Corresponding to the challenges in learning discriminative re-id features, this thesis contributes to the re-id domain by proposing three related methodologies and one new re-id setting: (1) Gaussian mixture importance estimation. Handcrafted features are usually not discriminative enough for person re-id because of noisy information, such as background clutters. To precisely evaluate the similarities between person images, the main task of distance metric learning is to filter out the noisy information. Keep It Simple and Straightforward MEtric (KISSME) is an effective method in person re-id. However, it is sensitive to the feature dimensionality and cannot capture the multi-modes in dataset. To this end, a Gaussian Mixture Importance Estimation re-id approach is proposed, which exploits the Gaussian Mixture Models for estimating the observed commonalities of similar and dissimilar person pairs in the feature space. (2) Unsupervised domain-adaptive person re-id based on pedestrian attributes. In person re-id, person identities are usually not overlapped among different domains (or datasets) and this raises the difficulties in generalizing re-id models. Different from person identity, pedestrian attributes, eg., hair length, clothes type and color, are consistent across different domains (or datasets). However, most of re-id datasets lack attribute annotations. On the other hand, in the field of pedestrian attribute recognition, there is a number of datasets labeled with attributes. Exploiting such data for re-id purpose can alleviate the shortage of attribute annotations in re-id domain and improve the generalization capability of re-id model. To this end, an unsupervised domain-adaptive re-id feature learning framework is proposed to make full use of attribute annotations. Specifically, an existing unsupervised domain adaptation method has been extended to transfer attribute-based features from attribute recognition domain to the re-id domain. With the proposed re-id feature learning framework, the domain invariant feature representations can be effectively extracted. (3) Intra-camera supervised person re-id. Annotating the large-scale re-id datasets requires a tedious data collection and annotation process and therefore leads to poor scalability in practical person re-id applications. To overcome this fundamental limitation, a new person re-id setting is considered without inter-camera identity association but only with identity labels independently annotated within each camera-view. This eliminates the most time-consuming and tedious inter-camera identity association annotating process and thus significantly reduces the amount of human efforts required during annotation. It hence gives rise to a more scalable and more feasible learning scenario, which is named as Intra-Camera Supervised (ICS) person re-id. Under this ICS setting, a new re-id method, i.e., Multi-task Mulit-label (MATE) learning method, is formulated. Given no inter-camera association, MATE is specially designed for self-discovering the inter-camera identity correspondence. This is achieved by inter-camera multi-label learning under a joint multi-task inference framework. In addition, MATE can also efficiently learn the discriminative re-id feature representations using the available identity labels within each camera-view
    • …
    corecore