223 research outputs found

    Usability in biometric recognition systems

    Get PDF
    Mención Internacional en el título de doctorBiometric recognition, which is a technology already mature, grows nowadays in several contexts, including forensics, access controls, home automation systems, internet, etc. Now that technology is moving to mobile scenarios, biometric recognition is being also integrated in smartphones, tablets and other mobile devices as a convenient solution for guaranteeing security, complementing other methods such as PIN or passwords. Nevertheless, the use of biometric recognition is not as spread as desired and it is still unknown for a wide percentage of the population. It has been demonstrated [1] that some of the possible reasons for the slow penetration of biometrics could be related to usability concerns. This could lead to various drawbacks like worst error rates due to systems misuses and it could end with users rejecting the technology and preferring other approaches. This Thesis is intended to cover this topic including a study of the current state of the art, several experiments analysing the most relevant usability factors and modifications to a usability evaluation methodology. The chosen methodology is the H-B interaction, carried out by Fernandez-Saavedra [2], based on the ISO/IEC 19795 [3], the HBSI [4], the ISO 9241-210 [5] and on Common Criteria [6]. Furthermore, this work is focused on dealing with accessibility concerns in biometric recognition systems. This topic, usually included into the usability field, has been addressed here separately, though the study of the accessibility has followed the same steps as the usability study: reviewing the state of the art, pointing and analysing the main influential factors and making improvements to the state of the art. The recently published standard EN 301 549 – “Accessibility requirements suitable for public procurement of ICT products and services in Europe” [7] has been also analysed. These two topics have been overcome through the well-known user-centric-design approach. In this way, first the influential factors have been detected. Then, they have been isolated (when possible) and measured. The results obtained have been then interpreted to suggest new updates to the H-B interaction. This 3-steps approach has been applied cyclically and the factors and methodology updated after each iteration. Due to technology and usability trends, during this work, all the systems/applications developed in the experiments have been thought to be mobile directly or indirectly. The biometric modalities used during the experiments performed in this Thesis are those pointed as suitable for biometric recognition in mobile devices: handwritten recognition signature, face and fingerprint recognition. Also, the scenarios and the applications used are in line with the main uses of biometrics in mobile environments, such as sign documents, locking/unlocking devices, or make payments. The outcomes of this Thesis are intended to guide future developers in the way of designing and testing proper usable and accessible biometrics. Finally, the results of this Thesis are being suggested as a new International Standard within ISO/IEC/JTC1/SC37 – Biometric Recognition, as standardization is the proper way of guaranteeing usability and accessibility in future biometric systems. The contributions of this Thesis include: • Improvements to the H-B interaction methodology, including several usability evaluations. • Improvements on the accessibility of the ICT (Information and Communications Technology) products by means of the integration of biometric recognition systems • Adaptation and application of the EN 301 549 to biometric recognition systems.El reconocimiento biométrico, que es una tecnología ya madura, crece hoy en día en varios contextos, incluyendo la medicina forense, controles de acceso, sistemas de automatización del hogar, internet, etc. Ahora que la tecnología se está moviendo a los escenarios móviles, el reconocimiento biométrico está siendo también integrado en los teléfonos inteligentes, tabletas y otros dispositivos móviles como una solución conveniente para garantizar la seguridad, como complemento de otros métodos de seguridad como el PIN o las contraseñas. Sin embargo, el uso del reconocimiento biométrico es todavía desconocido para un amplio porcentaje de la población. Se ha demostrado [1] que algunas de las posibles razones de la lenta penetración de la biometría podrían estar relacionadas con problemas de usabilidad. Esto podría dar lugar a diversos inconvenientes, ofreciendo un rendimiento por debajo de lo esperado debido al mal uso de los sistemas y podría terminar con los usuarios rechazando la tecnología y prefiriendo otros enfoques. Esta tesis doctoral trata este tema incluyendo un estudio del estado actual de la técnica, varios experimentos que analizan los factores de usabilidad más relevantes y modificaciones a una metodología de evaluación de la usabilidad, la "H-B interaction" [2] basada en la ISO / IEC 19795 [3], el HBSI [4], la ISO 9241 [5] y Common Criteria [6]. Además, este trabajo se centra también en los problemas de accesibilidad de los sistemas de reconocimiento biométrico. Este tema, que por lo general se incluye en el campo de la usabilidad, se ha tratado aquí por separado, aunque el estudio de la accesibilidad ha seguido los mismos pasos que el estudio de usabilidad: revisión del estado del arte, análisis de los principales factores influyentes y propuesta de cambios en la metodología H-B interaction. Han sido también analizados los requisitos de accesibilidad para las Tecnologías de la Información y la Comunicación (TIC) en Europa, bajo la norma EN 301 549 [7]. Estos dos temas han sido estudiados a través de un enfoque centrado en el usuario (User Centric Design - UCD). De esta manera, se han detectado los factores influyentes. A continuación, dichos factores han sido aislados (cuando ha sido posible) y medidos. Los resultados obtenidos han sido interpretados para sugerir nuevos cambios a la metodología H-B interaction. Este enfoque de 3 pasos se ha aplicado de forma cíclica a los factores y a la metodología después de cada iteración. Debido a las tendencias tecnológicas y de usabilidad, durante este trabajo, todos los sistemas / aplicaciones desarrolladas en los experimentos se han pensado para ser móviles, directa o indirectamente. Las modalidades utilizadas durante los experimentos realizados en esta tesis doctoral son las que se señalaron como adecuados para el reconocimiento biométrico en dispositivos móviles: la firma manuscrita, la cara y el reconocimiento de huellas dactilares. Además, los escenarios y las aplicaciones utilizadas están en línea con los principales usos de la biometría en entornos móviles, como la firma de documentos, el bloqueo / desbloqueo de dispositivos, o hacer pagos. Los resultados de esta tesis tienen como objetivo orientar a los futuros desarrolladores en el diseño y evaluación de la usabilidad y la accesibilidad en los sistemas de reconocimiento biométrico. Por último, los resultados de esta tesis doctoral se sugerirán como un nuevo estándar de ISO / IEC / JTC1 / SC37 - Biometric Recognition, ya que la normalización es la manera adecuada de garantizar la usabilidad y la accesibilidad en los futuros sistemas biométricos. Las contribuciones de esta tesis incluyen: • Mejora de la metodología de evaluación H-B interaction, incluyendo varias evaluaciones de usabilidad. • Mejora de la accesibilidad de los sistemas de información / electrónicos mediante la integración de sistemas biométricos y varias evaluaciones. • Adaptación y aplicación de la norma de accesibilidad EN 301 549 al campo de los sistemas biométricos.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Patrizio Campisi.- Secretario: Enrique Cabellos Pardo.- Vocal: Marcos Faundez Zanu

    Human-Computer Interaction

    Get PDF
    In this book the reader will find a collection of 31 papers presenting different facets of Human Computer Interaction, the result of research projects and experiments as well as new approaches to design user interfaces. The book is organized according to the following main topics in a sequential order: new interaction paradigms, multimodality, usability studies on several interaction mechanisms, human factors, universal design and development methodologies and tools

    Human factors in instructional augmented reality for intravehicular spaceflight activities and How gravity influences the setup of interfaces operated by direct object selection

    Get PDF
    In human spaceflight, advanced user interfaces are becoming an interesting mean to facilitate human-machine interaction, enhancing and guaranteeing the sequences of intravehicular space operations. The efforts made to ease such operations have shown strong interests in novel human-computer interaction like Augmented Reality (AR). The work presented in this thesis is directed towards a user-driven design for AR-assisted space operations, iteratively solving issues arisen from the problem space, which also includes the consideration of the effect of altered gravity on handling such interfaces.Auch in der bemannten Raumfahrt steigt das Interesse an neuartigen Benutzerschnittstellen, um nicht nur die Mensch-Maschine-Interaktion effektiver zu gestalten, sondern auch um einen korrekten Arbeitsablauf sicherzustellen. In der Vergangenheit wurden wiederholt Anstrengungen unternommen, Innenbordarbeiten mit Hilfe von Augmented Reality (AR) zu erleichtern. Diese Arbeit konzentriert sich auf einen nutzerorientierten AR-Ansatz, welcher zum Ziel hat, die Probleme schrittweise in einem iterativen Designprozess zu lösen. Dies erfordert auch die Berücksichtigung veränderter Schwerkraftbedingungen

    Towards Naturalistic Interfaces of Virtual Reality Systems

    Get PDF
    Interaction plays a key role in achieving realistic experience in virtual reality (VR). Its realization depends on interpreting the intents of human motions to give inputs to VR systems. Thus, understanding human motion from the computational perspective is essential to the design of naturalistic interfaces for VR. This dissertation studied three types of human motions, including locomotion (walking), head motion and hand motion in the context of VR. For locomotion, the dissertation presented a machine learning approach for developing a mechanical repositioning technique based on a 1-D treadmill for interacting with a unique new large-scale projective display, called the Wide-Field Immersive Stereoscopic Environment (WISE). The usability of the proposed approach was assessed through a novel user study that asked participants to pursue a rolling ball at variable speed in a virtual scene. In addition, the dissertation studied the role of stereopsis in avoiding virtual obstacles while walking by asking participants to step over obstacles and gaps under both stereoscopic and non-stereoscopic viewing conditions in VR experiments. In terms of head motion, the dissertation presented a head gesture interface for interaction in VR that recognizes real-time head gestures on head-mounted displays (HMDs) using Cascaded Hidden Markov Models. Two experiments were conducted to evaluate the proposed approach. The first assessed its offline classification performance while the second estimated the latency of the algorithm to recognize head gestures. The dissertation also conducted a user study that investigated the effects of visual and control latency on teleoperation of a quadcopter using head motion tracked by a head-mounted display. As part of the study, a method for objectively estimating the end-to-end latency in HMDs was presented. For hand motion, the dissertation presented an approach that recognizes dynamic hand gestures to implement a hand gesture interface for VR based on a static head gesture recognition algorithm. The proposed algorithm was evaluated offline in terms of its classification performance. A user study was conducted to compare the performance and the usability of the head gesture interface, the hand gesture interface and a conventional gamepad interface for answering Yes/No questions in VR. Overall, the dissertation has two main contributions towards the improvement of naturalism of interaction in VR systems. Firstly, the interaction techniques presented in the dissertation can be directly integrated into existing VR systems offering more choices for interaction to end users of VR technology. Secondly, the results of the user studies of the presented VR interfaces in the dissertation also serve as guidelines to VR researchers and engineers for designing future VR systems

    Direct interaction with large displays through monocular computer vision

    Get PDF
    Large displays are everywhere, and have been shown to provide higher productivity gain and user satisfaction compared to traditional desktop monitors. The computer mouse remains the most common input tool for users to interact with these larger displays. Much effort has been made on making this interaction more natural and more intuitive for the user. The use of computer vision for this purpose has been well researched as it provides freedom and mobility to the user and allows them to interact at a distance. Interaction that relies on monocular computer vision, however, has not been well researched, particularly when used for depth information recovery. This thesis aims to investigate the feasibility of using monocular computer vision to allow bare-hand interaction with large display systems from a distance. By taking into account the location of the user and the interaction area available, a dynamic virtual touchscreen can be estimated between the display and the user. In the process, theories and techniques that make interaction with computer display as easy as pointing to real world objects is explored. Studies were conducted to investigate the way human point at objects naturally with their hand and to examine the inadequacy in existing pointing systems. Models that underpin the pointing strategy used in many of the previous interactive systems were formalized. A proof-of-concept prototype is built and evaluated from various user studies. Results from this thesis suggested that it is possible to allow natural user interaction with large displays using low-cost monocular computer vision. Furthermore, models developed and lessons learnt in this research can assist designers to develop more accurate and natural interactive systems that make use of human’s natural pointing behaviours

    A usability assessment of a specific alternative computer input device for users with spinal cord injuries

    Get PDF
    The salient point of this research was to investigate the key factors of assistive devices for people with severe physical disabilities, i.e. spinal cord injury, when selecting and using an input device. The area of study was also concerned with validating a new computer device to enable those individuals with upper-limb impairments to engage the benefits of computer technology, via both user-issue and scientific-based evaluations. A specific methodology, concermng both user-Issue and scientific-evidence, was proposed for the studies related to assistive technology outcome measures. In order to validate the proposed methodology, the research work began with an in-depth survey (Study A), to give an insight into the present selection and utilisation of input devices among those computer users with spinal cord injuries and identify their specific needs when using a computer. Following the findings of this contextual survey, a SCI users' needs hierarchy was proposed for input device selection and use. Specific touchscreen devices, which matched the criteria in the hierarchy, were suggested as a possible solution for users with severe upper-limb disorders. Then, a series of user-centred validation studies, involving a pilot simulation study associated with a dimensional issue of an input device (Study B), followed by usability evaluations at the introductory phase (Study C), after short-term use and training (Study D) and after longer-term use and outcome comparisons (Study E), were carried out. The user perspectives and scientific data obtained from the usability assessments form the SCI subjects were used not only to demonstrate the effectiveness and efficiency of the assistive device, but also to fill the gap between the merely psychological/psychosocial-based measures and the merely scientific-focus evaluation. By merging a specific research technique and a systematic measuring procedure, a conceptual model for evaluating assistive technology outcome measures has been provided for this field of study. Moreover, this research has shown that the integration of user-issue and scientific-evidence can increase the reliability and validity of this type of device outcome measures and, therefore, attain a good match between users and the technology employed

    Effect of Tactile Feedback on Performance

    Get PDF
    Humans interact with their environment by obtaining information from various modalities of sensing. These various modalities of sensing combine to facilitate manipulation and interaction with objects and the environment. The way humans interact with computers mirrors this environmental interaction with the absence of feedback from the tactile channel. The majority of computer operation is completed visually because currently, the primary feedback humans receive from computers is through the eyes. This strong dependence on the visual modality can cause visual fatigue and fixation on displays, resulting in errors and a decrease in performance. Distributing tasks and information across sensory modalities could possibly solve this problem. This study added tactile feedback to the human computer interface through vibration of a mouse to more accurately reflect a human\u27s multi-sensory interaction with their environment. This investigation used time off target to measure performance in a pursuit-tracking task. The independent variables were type of feedback with two levels, (i.e., tactile feedback vs no tactile feedback) and speed of target at three different levels, (i.e., slow, medium, and fast). Tactile feedback improved pursuit-tracking performance by 6%. Significant main effects where found for both the speed and feedback factors, but no significant interaction between speed and feedback was obtained. This improvement in performance was consistent with previous research, and lends further support to the advantages multimodal feedback may have to offer man-machine interfaces

    Developing App from User Feedback using Deep Learning

    Get PDF

    Advances in Human-Robot Interaction

    Get PDF
    Rapid advances in the field of robotics have made it possible to use robots not just in industrial automation but also in entertainment, rehabilitation, and home service. Since robots will likely affect many aspects of human existence, fundamental questions of human-robot interaction must be formulated and, if at all possible, resolved. Some of these questions are addressed in this collection of papers by leading HRI researchers
    corecore