141 research outputs found

    Multisensory learning in adaptive interactive systems

    Get PDF
    The main purpose of my work is to investigate multisensory perceptual learning and sensory integration in the design and development of adaptive user interfaces for educational purposes. To this aim, starting from renewed understanding from neuroscience and cognitive science on multisensory perceptual learning and sensory integration, I developed a theoretical computational model for designing multimodal learning technologies that take into account these results. Main theoretical foundations of my research are multisensory perceptual learning theories and the research on sensory processing and integration, embodied cognition theories, computational models of non-verbal and emotion communication in full-body movement, and human-computer interaction models. Finally, a computational model was applied in two case studies, based on two EU ICT-H2020 Projects, "weDRAW" and "TELMI", on which I worked during the PhD

    Classification of Resting-State fMRI using Evolutionary Algorithms: Towards a Brain Imaging Biomarker for Parkinson’s Disease

    Get PDF
    It is commonly accepted that accurate early diagnosis and monitoring of neurodegenerative conditions is essential for effective disease management and delivery of medication and treatment. This research develops automatic methods for detecting brain imaging preclinical biomarkers for Parkinson’s disease (PD) by considering the novel application of evolutionary algorithms. An additional novel element of this work is the use of evolutionary algorithms to both map and predict the functional connectivity in patients using rs-fMRI data. Specifically, Cartesian Genetic Programming was used to classify dynamic causal modelling data as well as timeseries data. The findings were validated using two other commonly used classification methods (Artificial Neural Networks and Support Vector Machines) and by employing k-fold cross-validation. Across dynamic causal modelling and timeseries analyses, findings revealed maximum accuracies of 75.21% for early stage (prodromal) PD patients in which patients reveal no motor symptoms versus healthy controls, 85.87% for PD patients versus prodromal PD patients, and 92.09% for PD patients versus healthy controls. Prodromal PD patients were classified from healthy controls with high accuracy – this is notable and represents the key finding since current methods of diagnosing prodromal PD have low reliability and low accuracy. Furthermore, Cartesian Genetic Programming provided comparable performance accuracy relative to Artificial Neural Networks and Support Vector Machines. Nevertheless, evolutionary algorithms enable us to decode the classifier in terms of understanding the data inputs that are used, more easily than in Artificial Neural Networks and Support Vector Machines. Hence, these findings underscore the relevance of both dynamic causal modelling analyses for classification and Cartesian Genetic Programming as a novel classification tool for brain imaging data with medical implications for disease diagnosis, particularly in early stages 5-20 years prior to motor symptoms

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Intelligent systems: towards a new synthetic agenda

    Get PDF

    Peripersonal Space in the Humanoid Robot iCub

    Get PDF
    Developing behaviours for interaction with objects close to the body is a primary goal for any organism to survive in the world. Being able to develop such behaviours will be an essential feature in autonomous humanoid robots in order to improve their integration into human environments. Adaptable spatial abilities will make robots safer and improve their social skills, human-robot and robot-robot collaboration abilities. This work investigated how a humanoid robot can explore and create action-based representations of its peripersonal space, the region immediately surrounding the body where reaching is possible without location displacement. It presents three empirical studies based on peripersonal space findings from psychology, neuroscience and robotics. The experiments used a visual perception system based on active-vision and biologically inspired neural networks. The first study investigated the contribution of binocular vision in a reaching task. Results indicated the signal from vergence is a useful embodied depth estimation cue in the peripersonal space in humanoid robots. The second study explored the influence of morphology and postural experience on confidence levels in reaching assessment. Results showed that a decrease of confidence when assessing targets located farther from the body, possibly in accordance to errors in depth estimation from vergence for longer distances. Additionally, it was found that a proprioceptive arm-length signal extends the robot’s peripersonal space. The last experiment modelled development of the reaching skill by implementing motor synergies that progressively unlock degrees of freedom in the arm. The model was advantageous when compared to one that included no developmental stages. The contribution to knowledge of this work is extending the research on biologically-inspired methods for building robots, presenting new ways to further investigate the robotic properties involved in the dynamical adaptation to body and sensing characteristics, vision-based action, morphology and confidence levels in reaching assessment.CONACyT, Mexico (National Council of Science and Technology

    Creating computer-based learning environment for physically handicapped children

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1983.MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERINGBibliography: leaves 200-205.by Jose Armando Valente.Ph.D

    Evolving comprehensible and scalable solvers using CGP for solving some real-world inspired problems

    Get PDF
    My original contribution to knowledge is the application of Cartesian Genetic Programming to design some scalable and human-understandable metaheuristics automatically; those find some suitable solutions for real-world NP-hard and discrete problems. This technique is thought to possess the ability to raise the generality of a problem-solving process, allowing some supervised machine learning tasks and being able to evolve non-deterministic algorithms. \\ Two extensions of Cartesian Genetic Programming are presented. Iterative My original contribution to knowledge is the application of Cartesian Genetic Programming to design some scalable and human-understandable metaheuristics automatically; those find some suitable solutions for real-world NP-hard and discrete problems. This technique is thought to possess the ability to raise the generality of a problem-solving process, allowing some supervised machine learning tasks and being able to evolve non-deterministic algorithms. \\ Two extensions of Cartesian Genetic Programming are presented. Iterative Cartesian Genetic Programming can encode loops and nested loop with their termination criteria, making susceptible to evolutionary modification the whole programming construct. This newly developed extension and its application to metaheuristics are demonstrated to discover effective solvers for NP-hard and discrete problems. This thesis also extends Cartesian Genetic Programming and Iterative Cartesian Genetic Programming to adapt a hyper-heuristic reproductive operator at the same time of exploring the automatic design space. It is demonstrated the exploration of an automated design space can be improved when specific types of active and non-active genes are mutated. \\ A series of rigorous empirical investigations demonstrate that lowering the comprehension barrier of automatically designed algorithms can help communicating and identifying an effective and ineffective pattern of primitives. The complete evolution of loops and nested loops without imposing a hard limit on the number of recursive calls is shown to broaden the automatic design space. Finally, it is argued the capability of a learning objective function to assess the scalable potential of a generated algorithm can be beneficial to a generative hyper-heuristic

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described
    corecore