1,854 research outputs found

    Bioconductor: open software development for computational biology and bioinformatics.

    Get PDF
    The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry into interdisciplinary scientific research, and promoting the achievement of remote reproducibility of research results. We describe details of our aims and methods, identify current challenges, compare Bioconductor to other open bioinformatics projects, and provide working examples

    An Introduction to Programming for Bioscientists: A Python-based Primer

    Full text link
    Computing has revolutionized the biological sciences over the past several decades, such that virtually all contemporary research in the biosciences utilizes computer programs. The computational advances have come on many fronts, spurred by fundamental developments in hardware, software, and algorithms. These advances have influenced, and even engendered, a phenomenal array of bioscience fields, including molecular evolution and bioinformatics; genome-, proteome-, transcriptome- and metabolome-wide experimental studies; structural genomics; and atomistic simulations of cellular-scale molecular assemblies as large as ribosomes and intact viruses. In short, much of post-genomic biology is increasingly becoming a form of computational biology. The ability to design and write computer programs is among the most indispensable skills that a modern researcher can cultivate. Python has become a popular programming language in the biosciences, largely because (i) its straightforward semantics and clean syntax make it a readily accessible first language; (ii) it is expressive and well-suited to object-oriented programming, as well as other modern paradigms; and (iii) the many available libraries and third-party toolkits extend the functionality of the core language into virtually every biological domain (sequence and structure analyses, phylogenomics, workflow management systems, etc.). This primer offers a basic introduction to coding, via Python, and it includes concrete examples and exercises to illustrate the language's usage and capabilities; the main text culminates with a final project in structural bioinformatics. A suite of Supplemental Chapters is also provided. Starting with basic concepts, such as that of a 'variable', the Chapters methodically advance the reader to the point of writing a graphical user interface to compute the Hamming distance between two DNA sequences.Comment: 65 pages total, including 45 pages text, 3 figures, 4 tables, numerous exercises, and 19 pages of Supporting Information; currently in press at PLOS Computational Biolog

    The Bioperl toolkit: Perl modules for the life sciences

    Get PDF
    The Bioperl project is an international open-source collaboration of biologists, bioinformaticians, and computer scientists that has evolved over the past 7 yr into the most comprehensive library of Perl modules available for managing and manipulating life-science information. Bioperl provides an easy-to-use, stable, and consistent programming interface for bioinformatics application programmers. The Bioperl modules have been successfully and repeatedly used to reduce otherwise complex tasks to only a few lines of code. The Bioperl object model has been proven to be flexible enough to support enterprise-level applications such as EnsEMBL, while maintaining an easy learning curve for novice Perl programmers. Bioperl is capable of executing analyses and processing results from programs such as BLAST, ClustalW, or the EMBOSS suite. Interoperation with modules written in Python and Java is supported through the evolving BioCORBA bridge. Bioperl provides access to data stores such as GenBank and SwissProt via a flexible series of sequence input/output modules, and to the emerging common sequence data storage format of the Open Bioinformatics Database Access project. This study describes the overall architecture of the toolkit, the problem domains that it addresses, and gives specific examples of how the toolkit can be used to solve common life-sciences problems. We conclude with a discussion of how the open-source nature of the project has contributed to the development effort

    Data Models in Neuroinformatics

    Get PDF
    Advancements in integrated neuroscience are often characterized with data-driven approaches for discovery; these progressions are the result of continuous efforts aimed at developing integrated frameworks for the investigation of neuronal dynamics at increasing resolution and in varying scales. Since insights from integrated neuronal models frequently rely on both experimental and computational approaches, simulations and data modeling have inimitable roles. Moreover, data sharing across the neuroscientific community has become an essential component of data-driven approaches to neuroscience as is evident from the number and scale of ongoing national and multinational projects, engaging scientists from diverse branches of knowledge. In this heterogeneous environment, the need to share neuroscientific data as well as to utilize it across different simulation environments drove the momentum for standardizing data models for neuronal morphologies, biophysical properties, and connectivity schemes. Here, I review existing data models in neuroinformatics, ranging from flat to hybrid object-hierarchical approaches, and suggest a framework with which these models can be linked to experimental data, as well as to established records from existing databases. Linking neuronal models and experimental results with data on relevant articles, genes, proteins, disease, etc., might open a new dimension for data-driven neuroscience

    Web scraping technologies in an API world

    Get PDF
    Web services are the de facto standard in biomedical data integration. However, there are data integration scenarios that cannot be fully covered by Web services. A number of Web databases and tools do not support Web services, and existing Web services do not cover for all possible user data demands. As a consequence, Web data scraping, one of the oldest techniques for extracting Web contents, is still in position to offer a valid and valuable service to a wide range of bioinformatics applications, ranging from simple extraction robots to online meta-servers. This article reviews existing scraping frameworks and tools, identifying their strengths and limitations in terms of extraction capabilities. The main focus is set on showing how straightforward it is today to set up a data scraping pipeline, with minimal programming effort, and answer a number of practical needs. For exemplification purposes, we introduce a biomedical data extraction scenario where the desired data sources, well-known in clinical microbiology and similar domains, do not offer programmatic interfaces yet. Moreover, we describe the operation of WhichGenes and PathJam, two bioinformatics meta-servers that use scraping as means to cope with gene set enrichment analysis.This work was partially funded by (i) the [TIN2009-14057-C03-02] project from the Spanish Ministry of Science and Innovation, the Plan E from the Spanish Government and the European Union from the European Regional Development Fund (ERDF), (ii) the Portugal-Spain cooperation action sponsored by the Foundation of Portuguese Universities [E 48/11] and the Spanish Ministry of Science and Innovation [AIB2010PT-00353] and (iii) the Agrupamento INBIOMED [2012/273] from the DXPCTSUG (Direccion Xeral de Promocion Cientifica e Tecnoloxica do Sistema Universitario de Galicia) from the Galician Government and the European Union from the ERDF unha maneira de facer Europa. H. L. F. was supported by a pre-doctoral fellowship from the University of Vigo

    Phospho.ELM: a database of phosphorylation sitesā€”update 2008

    Get PDF
    Phospho.ELM is a manually curated database of eukaryotic phosphorylation sites. The resource includes data collected from published literature as well as high-throughput data sets

    Biomedical Event Extraction with Machine Learning

    Get PDF
    Biomedical natural language processing (BioNLP) is a subfield of natural language processing, an area of computational linguistics concerned with developing programs that work with natural language: written texts and speech. Biomedical relation extraction concerns the detection of semantic relations such as protein-protein interactions (PPI) from scientific texts. The aim is to enhance information retrieval by detecting relations between concepts, not just individual concepts as with a keyword search. In recent years, events have been proposed as a more detailed alternative for simple pairwise PPI relations. Events provide a systematic, structural representation for annotating the content of natural language texts. Events are characterized by annotated trigger words, directed and typed arguments and the ability to nest other events. For example, the sentence ā€œProtein A causes protein B to bind protein Cā€ can be annotated with the nested event structure CAUSE(A, BIND(B, C)). Converted to such formal representations, the information of natural language texts can be used by computational applications. Biomedical event annotations were introduced by the BioInfer and GENIA corpora, and event extraction was popularized by the BioNLP'09 Shared Task on Event Extraction. In this thesis we present a method for automated event extraction, implemented as the Turku Event Extraction System (TEES). A unified graph format is defined for representing event annotations and the problem of extracting complex event structures is decomposed into a number of independent classification tasks. These classification tasks are solved using SVM and RLS classifiers, utilizing rich feature representations built from full dependency parsing. Building on earlier work on pairwise relation extraction and using a generalized graph representation, the resulting TEES system is capable of detecting binary relations as well as complex event structures. We show that this event extraction system has good performance, reaching the first place in the BioNLP'09 Shared Task on Event Extraction. Subsequently, TEES has achieved several first ranks in the BioNLP'11 and BioNLP'13 Shared Tasks, as well as shown competitive performance in the binary relation Drug-Drug Interaction Extraction 2011 and 2013 shared tasks. The Turku Event Extraction System is published as a freely available open-source project, documenting the research in detail as well as making the method available for practical applications. In particular, in this thesis we describe the application of the event extraction method to PubMed-scale text mining, showing how the developed approach not only shows good performance, but is generalizable and applicable to large-scale real-world text mining projects. Finally, we discuss related literature, summarize the contributions of the work and present some thoughts on future directions for biomedical event extraction. This thesis includes and builds on six original research publications. The first of these introduces the analysis of dependency parses that leads to development of TEES. The entries in the three BioNLP Shared Tasks, as well as in the DDIExtraction 2011 task are covered in four publications, and the sixth one demonstrates the application of the system to PubMed-scale text mining.Siirretty Doriast
    • ā€¦
    corecore