10,956 research outputs found

    UML Class Diagram or Entity Relationship Diagram : An Object Relational Impedance Mismatch

    Get PDF
    It is now nearly 30 years since Peter Chen’s watershed paper “The Entity-Relationship Model –towards a Unified View of Data”. [1] The entity relationship model and variations and extensions to ithave been taught in colleges and universities for many years. In his original paper Peter Chen looked at converting his new ER model to the then existing data structure diagrams for the Network model. In recent years there has been a tendency to use a Unified Modelling Language (UML) class diagram forconceptual modeling for relational databases, and several popular course text books use UMLnotation to some degree [2] [3]. However Object and Relational technology are based on different paradigms. In the paper we argue that the UML class diagram is more of a logical model (implementation specific). ER Diagrams on theother hand, are at a conceptual level of database design dealing with the main items and their relationships and not with implementation specific detail. UML focuses on OOAD (Object Oriented Analysis and Design) and is navigational and program dependent whereas the relational model is set based and exhibits data independence. The ER model provides a well-established set of mapping rules for mapping to a relational model. In this paper we look specifically at the areas which can cause problems for the novice databasedesigner due to this conceptual mismatch of two different paradigms. Firstly, transferring the mapping of a weak entity from an Entity Relationship model to UML and secondly the representation of structural constraints between objects. We look at the mixture of notations which students mistakenly use when modeling. This is often the result of different notations being used on different courses throughout their degree. Several of the popular text books at the moment use either a variation of ER,UML, or both for teaching database modeling. At the moment if a student picks up a text book they could be faced with either; one of the many ER variations, UML, UML and a variation of ER both covered separately, or UML and ER merged together. We regard this problem as a conceptual impedance mismatch. This problem is documented in [21] who have produced a catalogue of impedance mismatch problems between object-relational and relational paradigms. We regard the problems of using UML class diagrams for relational database design as a conceptual impedance mismatch as the Entity Relationship model does not have the structures in the model to deal with Object Oriented concepts Keywords: EERD, UML Class Diagram, Relational Database Design, Structural Constraints, relational and object database impedance mismatch. The ER model was originally put forward by Chen [1] and subsequently extensions have been added to add further semantics to the original model; mainly the concepts of specialisation, generalisation and aggregation. In this paper we refer to an Entity-Relationship model (ER) as the basic model and an extended or enhanced entity-relationship model (EER) as a model which includes the extra concepts. The ER and EER models are also often used to aid communication between the designer and the user at the requirements analysis stage. In this paper when we use the term “conceptual model” we mean a model that is not implementation specific.ISBN: 978-84-616-3847-5 3594Peer reviewe

    Modeling the object-oriented software process: OPEN and the unified process

    Get PDF
    A short introduction to software process modeling is presented, particularly object-oriented modeling. Two major industrial process models are discussed: the OPEN model and the Unified Process model. In more detail, the quality assurance in the Unified Process tool (formally called Objectory) is reviewed

    Semantic model-driven development of service-centric software architectures

    Get PDF
    Service-oriented architecture (SOA) is a recent architectural paradigm that has received much attention. The prevalent focus on platforms such as Web services, however, needs to be complemented by appropriate software engineering methods. We propose the model-driven development of service-centric software systems. We present in particular an investigation into the role of enriched semantic modelling for a modeldriven development framework for service-centric software systems. Ontologies as the foundations of semantic modelling and its enhancement through architectural pattern modelling are at the core of the proposed approach. We introduce foundations and discuss the benefits and also the challenges in this context

    Generating natural language specifications from UML class diagrams

    Get PDF
    Early phases of software development are known to be problematic, difficult to manage and errors occurring during these phases are expensive to correct. Many systems have been developed to aid the transition from informal Natural Language requirements to semistructured or formal specifications. Furthermore, consistency checking is seen by many software engineers as the solution to reduce the number of errors occurring during the software development life cycle and allow early verification and validation of software systems. However, this is confined to the models developed during analysis and design and fails to include the early Natural Language requirements. This excludes proper user involvement and creates a gap between the original requirements and the updated and modified models and implementations of the system. To improve this process, we propose a system that generates Natural Language specifications from UML class diagrams. We first investigate the variation of the input language used in naming the components of a class diagram based on the study of a large number of examples from the literature and then develop rules for removing ambiguities in the subset of Natural Language used within UML. We use WordNet,a linguistic ontology, to disambiguate the lexical structures of the UML string names and generate semantically sound sentences. Our system is developed in Java and is tested on an independent though academic case study

    Component Composition in Business and System Modelling

    Get PDF
    Bespoke development of large business systems can be couched in terms of the composition of components, which are, put simply, chunks of development work. Design, mapping a specification to an implementation, can also be expressed in terms of components: a refinement comprising an abstract component, a concrete component and a mapping between them. Similarly, system extension is the composition of an existing component, the legacy system, with a new component, the extension. This paper overviews work being done on a UK EPSRC funded research project formulating and formalizing techniques for describing, composing and performing integrity checks on components. Although the paper focuses on the specification and development of information systems, the techniques are equally applicable to the modeling and re-engineering of businesses, where no computer system may be involved

    Semantics Through Pictures: towards a diagrammatic semantics for object-oriented modelling notations

    Get PDF
    An object-oriented (OO) model has a static component, the set of allowable snapshots or system states, and a dynamic component, the set of filmstrips or sequences of snapshots. Diagrammatic notations, such as those in UML, each places constraints on the static and/or dynamic models. A formal semantics of OO modeling notations can be constructed by providing a formal description of (i) sets of snapshots and filmstrips, (ii) constraints on those sets, and (iii) the derivation of those constraints from diagrammatic notations. In addition, since constraints are contributed by many diagrams for the same model, a way of doing this compositionally is desirable. One approach to the semantics is to use first-order logic for (i) and (ii), and theory inclusion with renaming, as in Larch, to characterize composition. A common approach to (iii) is to bootstrap: provide a semantics for a kernel of the notation and then use the kernel to give a semantics to the other notations. This only works if a kernel which is sufficiently expressive can be identified, and this is not the case for UML. However, we have developed a diagrammatic notation, dubbed constraint diagrams, which seems capable of expressing most if not all static and dynamic constraints, and it is proposed that this be used to give a diagrammatic semantics to OO models
    • …
    corecore