316 research outputs found

    Deep Affordance-grounded Sensorimotor Object Recognition

    Full text link
    It is well-established by cognitive neuroscience that human perception of objects constitutes a complex process, where object appearance information is combined with evidence about the so-called object "affordances", namely the types of actions that humans typically perform when interacting with them. This fact has recently motivated the "sensorimotor" approach to the challenging task of automatic object recognition, where both information sources are fused to improve robustness. In this work, the aforementioned paradigm is adopted, surpassing current limitations of sensorimotor object recognition research. Specifically, the deep learning paradigm is introduced to the problem for the first time, developing a number of novel neuro-biologically and neuro-physiologically inspired architectures that utilize state-of-the-art neural networks for fusing the available information sources in multiple ways. The proposed methods are evaluated using a large RGB-D corpus, which is specifically collected for the task of sensorimotor object recognition and is made publicly available. Experimental results demonstrate the utility of affordance information to object recognition, achieving an up to 29% relative error reduction by its inclusion.Comment: 9 pages, 7 figures, dataset link included, accepted to CVPR 201

    Open-Vocabulary Affordance Detection using Knowledge Distillation and Text-Point Correlation

    Full text link
    Affordance detection presents intricate challenges and has a wide range of robotic applications. Previous works have faced limitations such as the complexities of 3D object shapes, the wide range of potential affordances on real-world objects, and the lack of open-vocabulary support for affordance understanding. In this paper, we introduce a new open-vocabulary affordance detection method in 3D point clouds, leveraging knowledge distillation and text-point correlation. Our approach employs pre-trained 3D models through knowledge distillation to enhance feature extraction and semantic understanding in 3D point clouds. We further introduce a new text-point correlation method to learn the semantic links between point cloud features and open-vocabulary labels. The intensive experiments show that our approach outperforms previous works and adapts to new affordance labels and unseen objects. Notably, our method achieves the improvement of 7.96% mIOU score compared to the baselines. Furthermore, it offers real-time inference which is well-suitable for robotic manipulation applications.Comment: 8 page

    Human Activity Recognition and Prediction using RGBD Data

    Get PDF
    Being able to predict and recognize human activities is an essential element for us to effectively communicate with other humans during our day to day activities. A system that is able to do this has a number of appealing applications, from assistive robotics to health care and preventative medicine. Previous work in supervised video-based human activity prediction and detection fails to capture the richness of spatiotemporal data that these activities generate. Convolutional Long short-term memory (Convolutional LSTM) networks are a useful tool in analyzing this type of data, showing good results in many other areas. This thesis’ focus is on utilizing RGB-D Data to improve human activity prediction and recognition. A modified Convolutional LSTM network is introduced to do so. Experiments are performed on the network and are compared to other models in-use as well as the current state-of-the-art system. We show that our proposed model for human activity prediction and recognition outperforms the current state-of-the-art models in the CAD-120 dataset without giving bounding frames or ground-truths about objects

    Open-Vocabulary Affordance Detection in 3D Point Clouds

    Full text link
    Affordance detection is a challenging problem with a wide variety of robotic applications. Traditional affordance detection methods are limited to a predefined set of affordance labels, hence potentially restricting the adaptability of intelligent robots in complex and dynamic environments. In this paper, we present the Open-Vocabulary Affordance Detection (OpenAD) method, which is capable of detecting an unbounded number of affordances in 3D point clouds. By simultaneously learning the affordance text and the point feature, OpenAD successfully exploits the semantic relationships between affordances. Therefore, our proposed method enables zero-shot detection and can be able to detect previously unseen affordances without a single annotation example. Intensive experimental results show that OpenAD works effectively on a wide range of affordance detection setups and outperforms other baselines by a large margin. Additionally, we demonstrate the practicality of the proposed OpenAD in real-world robotic applications with a fast inference speed (~100ms). Our project is available at https://openad2023.github.io.Comment: Accepted to The 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023

    Conditional Affordance Learning for Driving in Urban Environments

    Full text link
    Most existing approaches to autonomous driving fall into one of two categories: modular pipelines, that build an extensive model of the environment, and imitation learning approaches, that map images directly to control outputs. A recently proposed third paradigm, direct perception, aims to combine the advantages of both by using a neural network to learn appropriate low-dimensional intermediate representations. However, existing direct perception approaches are restricted to simple highway situations, lacking the ability to navigate intersections, stop at traffic lights or respect speed limits. In this work, we propose a direct perception approach which maps video input to intermediate representations suitable for autonomous navigation in complex urban environments given high-level directional inputs. Compared to state-of-the-art reinforcement and conditional imitation learning approaches, we achieve an improvement of up to 68 % in goal-directed navigation on the challenging CARLA simulation benchmark. In addition, our approach is the first to handle traffic lights and speed signs by using image-level labels only, as well as smooth car-following, resulting in a significant reduction of traffic accidents in simulation.Comment: Accepted for Conference on Robot Learning (CoRL) 201

    Self-Supervised Learning of Action Affordances as Interaction Modes

    Full text link
    When humans perform a task with an articulated object, they interact with the object only in a handful of ways, while the space of all possible interactions is nearly endless. This is because humans have prior knowledge about what interactions are likely to be successful, i.e., to open a new door we first try the handle. While learning such priors without supervision is easy for humans, it is notoriously hard for machines. In this work, we tackle unsupervised learning of priors of useful interactions with articulated objects, which we call interaction modes. In contrast to the prior art, we use no supervision or privileged information; we only assume access to the depth sensor in the simulator to learn the interaction modes. More precisely, we define a successful interaction as the one changing the visual environment substantially and learn a generative model of such interactions, that can be conditioned on the desired goal state of the object. In our experiments, we show that our model covers most of the human interaction modes, outperforms existing state-of-the-art methods for affordance learning, and can generalize to objects never seen during training. Additionally, we show promising results in the goal-conditional setup, where our model can be quickly fine-tuned to perform a given task. We show in the experiments that such affordance learning predicts interaction which covers most modes of interaction for the querying articulated object and can be fine-tuned to a goal-conditional model. For supplementary: https://actaim.github.io

    A Deep Learning Approach to Object Affordance Segmentation

    Full text link
    Learning to understand and infer object functionalities is an important step towards robust visual intelligence. Significant research efforts have recently focused on segmenting the object parts that enable specific types of human-object interaction, the so-called "object affordances". However, most works treat it as a static semantic segmentation problem, focusing solely on object appearance and relying on strong supervision and object detection. In this paper, we propose a novel approach that exploits the spatio-temporal nature of human-object interaction for affordance segmentation. In particular, we design an autoencoder that is trained using ground-truth labels of only the last frame of the sequence, and is able to infer pixel-wise affordance labels in both videos and static images. Our model surpasses the need for object labels and bounding boxes by using a soft-attention mechanism that enables the implicit localization of the interaction hotspot. For evaluation purposes, we introduce the SOR3D-AFF corpus, which consists of human-object interaction sequences and supports 9 types of affordances in terms of pixel-wise annotation, covering typical manipulations of tool-like objects. We show that our model achieves competitive results compared to strongly supervised methods on SOR3D-AFF, while being able to predict affordances for similar unseen objects in two affordance image-only datasets.Comment: 5 pages, 4 figures, ICASSP 202
    • …
    corecore