5,610 research outputs found

    Verifying service continuity in a satellite reconfiguration procedure: application to a satellite

    Get PDF
    The paper discusses the use of the TURTLE UML profile to model and verify service continuity during dynamic reconfiguration of embedded software, and space-based telecommunication software in particular. TURTLE extends UML class diagrams with composition operators, and activity diagrams with temporal operators. Translating TURTLE to the formal description technique RT-LOTOS gives the profile a formal semantics and makes it possible to reuse verification techniques implemented by the RTL, the RT-LOTOS toolkit developed at LAAS-CNRS. The paper proposes a modeling and formal validation methodology based on TURTLE and RTL, and discusses its application to a payload software application in charge of an embedded packet switch. The paper demonstrates the benefits of using TURTLE to prove service continuity for dynamic reconfiguration of embedded software

    Concurrent cell rate simulation of ATM telecommunications network.

    Get PDF
    PhDAbstract not availabl

    Inter-Domain Integration of Services and Service Management

    No full text
    The evolution of the global telecommunications industry into an open services market presents developers of telecommunication service and management systems with many new challenges. Increased competition, complex service provision chains and integrated service offerings require effective techniques for the rapid integration of service and management systems over multiple organisational domains. These integration issues have been examined in the ACTS project Prospect by developing a working set of integrated, managed telecommunications services for a user trial. This paper presents the initial results of this work detailing the technologies and standards used, the architectural approach taken and the application of this approach to specific services

    Active networks: an evolution of the internet

    Get PDF
    Active Networks can be seen as an evolution of the classical model of packet-switched networks. The traditional and ”passive” network model is based on a static definition of the network node behaviour. Active Networks propose an “active” model where the intermediate nodes (switches and routers) can load and execute user code contained in the data units (packets). Active Networks are a programmable network model, where bandwidth and computation are both considered shared network resources. This approach opens up new interesting research fields. This paper gives a short introduction of Active Networks, discusses the advantages they introduce and presents the research advances in this field

    Architecture and Design of Medical Processor Units for Medical Networks

    Full text link
    This paper introduces analogical and deductive methodologies for the design medical processor units (MPUs). From the study of evolution of numerous earlier processors, we derive the basis for the architecture of MPUs. These specialized processors perform unique medical functions encoded as medical operational codes (mopcs). From a pragmatic perspective, MPUs function very close to CPUs. Both processors have unique operation codes that command the hardware to perform a distinct chain of subprocesses upon operands and generate a specific result unique to the opcode and the operand(s). In medical environments, MPU decodes the mopcs and executes a series of medical sub-processes and sends out secondary commands to the medical machine. Whereas operands in a typical computer system are numerical and logical entities, the operands in medical machine are objects such as such as patients, blood samples, tissues, operating rooms, medical staff, medical bills, patient payments, etc. We follow the functional overlap between the two processes and evolve the design of medical computer systems and networks.Comment: 17 page

    TINA as a virtual market place for telecommunication and information services: the VITAL experiment

    No full text
    The VITAL (Validation of Integrated Telecommunication Architectures for the Long-Term) project has defined, implemented and demonstrated an open distributed telecommunication architecture (ODTA) for deploying, managing and using a set of heterogeneous multimedia, multi-party, and mobility services. The architecture was based on the latest specifications released by TINA-C. The architecture was challenged in a set of trials by means of a heterogeneous set of applications. Some of the applications were developed within the project from scratch, while some others focused on integrating commercially available applications. The applications were selected in such a way as to assure full coverage of the architecture implementation and reflect a realistic use of it. The VITAL experience of refining and implementing TINA specifications and challenging the resulting platform by a heterogeneous set of services has proven the openness, flexibility and reusability of TINA. This paper describes the VITAL approach when choosing the different services and how they challenge and interact with the architecture, focusing especially on the service architecture and the Ret reference point definitions. The VITAL adjustments and enhancements to the TINA architecture are described. This paper contributes to proving that the TINA-based VITAL ODTA allows for easy and cost-effective development and deployment of advanced end-user and operator services, and can indeed act as the basis for a virtual market place for telecommunications service

    SwitchWare: Accelerating Network Evolution (White Paper)

    Get PDF
    We propose the development of a set of software technologies ( SwitchWare ) which will enable rapid development and deployment of new network services. The key insight is that by making the basic network service selectable on a per user (or even per packet) basis, the need for formal standardization is eliminated. Additionally, by making the basic network service programmable, the deployment times, today constrained by capital funding limitations, are tremendously reduced (to the order of software distribution times). Finally, by constructing an advanced, robust programming environment, even the service development time can be reduced. A SwitchWare switch consists of input and output ports controlled by a software-programmable element; programs are contained in sequences of messages sent to the SwitchWare switch\u27s input ports, which interpret the messages as programs. We call these Switchlets . This accelerates the pace of network evolution, as evolving user needs can be immediately reflected in the network infrastructure. Immediate reconfigurability enhances the adaptability of the network infrastructure in the face of unexpected situations. We call a network built from SwitchWare switches an active network

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page
    • …
    corecore