1,087 research outputs found

    The 4th Conference of PhD Students in Computer Science

    Get PDF

    PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-Time Code Generation

    Full text link
    High-performance computing has recently seen a surge of interest in heterogeneous systems, with an emphasis on modern Graphics Processing Units (GPUs). These devices offer tremendous potential for performance and efficiency in important large-scale applications of computational science. However, exploiting this potential can be challenging, as one must adapt to the specialized and rapidly evolving computing environment currently exhibited by GPUs. One way of addressing this challenge is to embrace better techniques and develop tools tailored to their needs. This article presents one simple technique, GPU run-time code generation (RTCG), along with PyCUDA and PyOpenCL, two open-source toolkits that support this technique. In introducing PyCUDA and PyOpenCL, this article proposes the combination of a dynamic, high-level scripting language with the massive performance of a GPU as a compelling two-tiered computing platform, potentially offering significant performance and productivity advantages over conventional single-tier, static systems. The concept of RTCG is simple and easily implemented using existing, robust infrastructure. Nonetheless it is powerful enough to support (and encourage) the creation of custom application-specific tools by its users. The premise of the paper is illustrated by a wide range of examples where the technique has been applied with considerable success.Comment: Submitted to Parallel Computing, Elsevie

    A meta-semantic language for smart component-adapters

    Get PDF
    The issues confronting the software development community today are significantly different from the problems it faced only a decade ago. Advances in software development tools and technologies during the last two decades have greatly enhanced the ability to leverage large amounts of software for creating new applications through the reuse of software libraries and application frameworks. The problems facing organizations today are increasingly focused around systems integration and the creation of information flows. Software modeling based on the assembly of reusable components to support software development has not been successfully implemented on a wide scale. Several models for reusable software components have been suggested which primarily address the wiring-level connectivity problem. While this is considered necessary, it is not sufficient to support an automated process of component assembly. Two critical issues that remain unresolved are: (1) semantic modeling of components, and (2) deployment process that supports automated assembly. The first issue can be addressed through domain-based standardization that would make it possible for independent developers to produce interoperable components based on a common set of vocabulary and understanding of the problem domain. This is important not only for providing a semantic basis for developing components but also for the interoperability between systems. The second issue is important for two reasons: (a) eliminate the need for developers to be involved in the final assembly of software components, and (b) provide a basis for the development process to be potentially driven by the user. To resolve the above remaining issues (1) and (2) a late binding mechanism between components based on meta-protocols is required. In this dissertation we address the above issues by proposing a generic framework for the development of software components and an interconnection language, COMPILE, for the specification of software systems from components. The computational model of the COMPILE language is based on late and dynamic binding of the components\u27 control, data, and function properties. The use of asynchronous callbacks for method invocation allows control binding among components to be late and dynamic. Data exchanged between components is defined through the use of a meta- language that can describe the semantics of the information but without being bound to any specific programming language type representation. Late binding to functions is accomplished by maintaining domain-based semantics as component metainformation. This information allows clients of components to map generic requested service to specific functions

    Efficient Customizable Middleware

    Get PDF
    The rather large feature set of current Distributed Object Computing (DOC) middleware can be a liability for certain applications which have a need for only a certain subset of these features but have to suffer performance degradation and code bloat due to all the present features. To address this concern, a unique approach to building fully customizable middleware was undertaken in FACET, a CORBA event channel written using AspectJ. FACET consists of a small, essential core that represents the basic structure and functionality of an event channel into which additional features are woven using aspects so that the resulting event channel supports all of the features needed by a given embedded application. However, the use of CORBA as the underlying transport mechanism may make FACET unsuitable for use in small-scale embedded systems because of the considerable footprint of many ORBs. In this thesis, we describe how the use of CORBA in the event channel can be made an optional feature in building highly efficient middle-ware. We look at the challenges that arise in abstracting the method invocation layer, document design patterns discovered and present quantitative footprint, throughput performance data and analysis. We also examine the problem of integrating FACET, written in Java, into the Boeing Open Experimental Platform (OEP), written in C++, in order to serve as a replacement for the TAO Real-Time Event Channel (RTEC). We evaluate the available alternatives in building such an implementation for efficiency, describe our use of a native-code compiler for Java, gcj, and present data on the efficacy of this approach. Finally, we take preliminary look into the problem of efficiently testing middleware with a large number of highly granular features. Since the number of possible combinations grow exponentially, building and testing all possible combinations quickly becomes impractical. To address this, we examine the conditions under which features are non-interfering. Non-interfering features will only need to be tested in isolation removing the need to test features in combination thus reducing the intractability of the problem

    When and how to develop domain-specific languages

    Get PDF
    Domain-specific languages (DSLs) are languages tailored to a specific application domain. They offer substantial gains in expressiveness and ease of use compared with general purpose programming languages in their domain of application. DSL development is hard, requiring both domain knowledge and language development expertise. Few people have both. Not surprisingly, the decision to develop a DSL is often postponed indefinitely, if considered at all, and most DSLs never get beyond the application library stage. While many articles have been written on the development of particular DSLs, there is very limited literature on DSL development methodologies and many questions remain regarding when and how to develop a DSL. To aid the DSL developer, we identify patterns in the decision, analysis, design, and implementation phases of DSL development. Our patterns try to improve on and extend earlier work on DSL design patterns, in particular by Spinellis (2001). We also discuss domain analysis tools and language development systems that may help to speed up DSL development. Finally, we state a number of open problems

    Static Analysis for Ruby in the Presence of Gradual Typing

    Get PDF
    Dynamic languages provide new challenges to traditional static analysis techniques, leaving most errors to be detected at runtime and making many properties of code difficult to infer. Ruby code usually takes advantage of both dynamic typing and metaprogramming to produce elegant yet difficult-to-analyze programs. Function evalpq and its variants, which usually foil static analysis, are used frequently as a primitive runtime macro system. The goal of this thesis is to answer the question: What useful information about real-world Ruby programs can be determined statically with a high degree of accuracy? Two observations lead to a number of statically-discoverable errors and properties in parseable Ruby programs. The first is that many interesting properties of a program can be discovered through traditional static analysis techniques despite the presence of dynamic typing. The second is that most metaprogramming occurs when the program files are loaded and not during the execution of the main program. Traditional techniques, such as flow analysis and Static Single Assignment transformations aid extraction of program invariants, including both explicitly programmed constants and those implicitly defined by Ruby\u27s semantics. A meaningful, well-defined distinction between load time and run time in Ruby is developed and addresses the second observation. This distinction allows us to statically discern properties of a Ruby program despite many idioms that require dynamic evaluation of code. Lastly, gradual typing through optional annotations improves the quality of error discovery and other statically-inferred properties

    Engineering Automation for Reliable Software Interim Progress Report (10/01/2000 - 09/30/2001)

    Get PDF
    Prepared for: U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211The objective of our effort is to develop a scientific basis for producing reliable software that is also flexible and cost effective for the DoD distributed software domain. This objective addresses the long term goals of increasing the quality of service provided by complex systems while reducing development risks, costs, and time. Our work focuses on "wrap and glue" technology based on a domain specific distributed prototype model. The key to making the proposed approach reliable, flexible, and cost-effective is the automatic generation of glue and wrappers based on a designer's specification. The "wrap and glue" approach allows system designers to concentrate on the difficult interoperability problems and defines solutions in terms of deeper and more difficult interoperability issues, while freeing designers from implementation details. Specific research areas for the proposed effort include technology enabling rapid prototyping, inference for design checking, automatic program generation, distributed real-time scheduling, wrapper and glue technology, and reliability assessment and improvement. The proposed technology will be integrated with past research results to enable a quantum leap forward in the state of the art for rapid prototyping.U. S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-22110473-MA-SPApproved for public release; distribution is unlimited
    corecore