3,554 research outputs found

    Dynamic Control of Mobile Multirobot Systems: The Cluster Space Formulation

    Get PDF
    The formation control technique called cluster space control promotes simplified specification and monitoring of the motion of mobile multirobot systems of limited size. Previous paper has established the conceptual foundation of this approach and has experimentally verified and validated its use for various systems implementing kinematic controllers. In this paper, we briefly review the definition of the cluster space framework and introduce a new cluster space dynamic model. This model represents the dynamics of the formation as a whole as a function of the dynamics of the member robots. Given this model, generalized cluster space forces can be applied to the formation, and a Jacobian transpose controller can be implemented to transform cluster space compensation forces into robot-level forces to be applied to the robots in the formation. Then, a nonlinear model-based partition controller is proposed. This controller cancels out the formation dynamics and effectively decouples the cluster space variables. Computer simulations and experimental results using three autonomous surface vessels and four land rovers show the effectiveness of the approach. Finally, sensitivity to errors in the estimation of cluster model parameters is analyzed.Fil: Mas, Ignacio Agustin. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kitts, Christopher. Santa Clara University; Estados Unido

    Service-oriented agent architecture for autonomous maritime vehicles

    Get PDF
    Advanced ocean systems are increasing their capabilities and the degree of autonomy more and more in order to perform more sophisticated maritime missions. Remotely operated vehicles are no longer cost-effective since they are limited by economic support costs, and the presence and skills of the human operator. Alternatively, autonomous surface and underwater vehicles have the potential to operate with greatly reduced overhead costs and level of operator intervention. This Thesis proposes an Intelligent Control Architecture (ICA) to enable multiple collaborating marine vehicles to autonomously carry out underwater intervention missions. The ICA is generic in nature but aimed at a case study where a marine surface craft and an underwater vehicle are required to work cooperatively. They are capable of cooperating autonomously towards the execution of complex activities since they have different but complementary capabilities. The architectural foundation to achieve the ICA lays on the flexibility of service-oriented computing and agent technology. An ontological database captures the operator skills, platform capabilities and, changes in the environment. The information captured, stored as knowledge, enables reasoning agents to plan missions based on the current situation. The ICA implementation is verified in simulation, and validated in trials by means of a team of autonomous marine robots. This Thesis also presents architectural details and evaluation scenarios of the ICA, results of simulations and trials from different maritime operations, and future research directions

    The effect of surface treatment on composite interface, tensile properties and water absorption of suger palm fiber/polypropylene composites

    Get PDF
    The rising concern towards environmental issues besides the requirement for more flexible polymer-based material has led to increasing of interest in studying about green composite. Sugar palm fiber (SPF) is a versatile fiber plant employed with wide range of application such as in automotive, packaging and buildings construction. This research was aimed to study the effect of surface treatment on composite interface, tensile properties and water absorption of sugar palm fiber/polypropylene (SPFPP) composite by using different surface treatments such as silane (Si), atmospheric glow discharge plasma (Agd) and maleic anhydride (Ma). Silane treatment was carried out by using immersion method, the Agd plasma was conducted using polymerization and lastly polypropylene grafted maleic anhydride by using melting approach. The SPFPP composite was prepared by using injection moulding with fiber content var­ied from 10-30wt%. The effect of interface enhancement on morphology, mechanical properties and water uptakes of SPFPP composites were then investigated by using FfIR, FESEM, tensile test and water absorption test. Overall, the outcome shows that aJl types of surface treatments had improved the interface of SPFPP composite, thus improving its tensile properties compared to the benchmark untreated SPFPP (Ut­SPFPP) composites and polypropylene. The 30wt% Ma-SPFPP composite shows the highest improvement in tensile properties with 58% and 27% increase in the respective Young's Modulus and tensile strength value compared to Ut-SPFPP composite, while 10wt% Ma-SPFPP composite shows the smallest reduction in elongation compared to Neat PP. On the other hand, the 30wt% Si-SPFPP composite shows the lowest water absorption with 20% reduction respective to Ut-SPFPP composite. In conclusion, the surface treatments have proven succesfull in enhancing the natural fiber-polymer in­terface and improve the tensile properties of SPFPP composite with Ma-SPFPP shows the highest improvement, foJlowed by Agd-SPFPP and Si-SPFPP composites

    The effect of surface treatment on composite interface, tensile properties and water absorption of suger palm fiber/polypropylene composites

    Get PDF
    The rising concern towards environmental issues besides the requirement for more flexible polymer-based material has led to increasing of interest in studying about green composite. Sugar palm fiber (SPF) is a versatile fiber plant employed with wide range of application such as in automotive, packaging and buildings construction. This research was aimed to study the effect of surface treatment on composite interface, tensile properties and water absorption of sugar palm fiber/polypropylene (SPFPP) composite by using different surface treatments such as silane (Si), atmospheric glow discharge plasma (Agd) and maleic anhydride (Ma). Silane treatment was carried out by using immersion method, the Agd plasma was conducted using polymerization and lastly polypropylene grafted maleic anhydride by using melting approach. The SPFPP composite was prepared by using injection moulding with fiber content var­ied from 10-30wt%. The effect of interface enhancement on morphology, mechanical properties and water uptakes of SPFPP composites were then investigated by using FfIR, FESEM, tensile test and water absorption test. Overall, the outcome shows that aJl types of surface treatments had improved the interface of SPFPP composite, thus improving its tensile properties compared to the benchmark untreated SPFPP (Ut­SPFPP) composites and polypropylene. The 30wt% Ma-SPFPP composite shows the highest improvement in tensile properties with 58% and 27% increase in the respective Young's Modulus and tensile strength value compared to Ut-SPFPP composite, while 10wt% Ma-SPFPP composite shows the smallest reduction in elongation compared to Neat PP. On the other hand, the 30wt% Si-SPFPP composite shows the lowest water absorption with 20% reduction respective to Ut-SPFPP composite. In conclusion, the surface treatments have proven succesfull in enhancing the natural fiber-polymer in­terface and improve the tensile properties of SPFPP composite with Ma-SPFPP shows the highest improvement, foJlowed by Agd-SPFPP and Si-SPFPP composites

    Robotized underwater interventions

    Get PDF
    Working in underwater environments poses many challenges for robotic systems. One of them is the low bandwidth and high latency of underwater acoustic communications, which limits the possibility of interaction with submerged robots. One solution is to have a tether cable to enable high speed and low latency communications, but that requires a support vessel and increases costs. For that reason, autonomous underwater robots are a very interesting solution. Several research projects have demonstrated autonomy capabilities of Underwater Vehicle Manipulator Systems (UVMS) in performing basic manipulation tasks, and, moving a step further, this chapter will present a unifying architecture for the control of an UVMS, comprehensive of all the control objectives that an UVMS should take into account, their different priorities and the typical mission phases that an UVMS has to tackle. The proposed strategy is supported both by a complete simulated execution of a test-case mission and experimental results

    Cooperative Control of Multiple Biomimetic Robotic Fish

    Get PDF

    Theory And Design Issues Of Underwater Manipulator.

    Get PDF
    In this paper we discuss the theory and implementation issue that is faced by underwater manipulators designers

    Computational dynamics for robotic systems on land and under water

    Get PDF
    Motivated by the need for more complex robotic systems to accomplish more difficult tasks such as hazardous waste cleanup, assembly operations, and deep-sea construction and exploration, this dissertation presents the development of efficient dynamic simulation algorithms for multiple chain robotic systems on land and under water. These algorithms can be used in the development of control algorithms, and with real-time rates, hardware- and human-in-the-loop applications also become possible. These uses of simulation can significantly reduce the cost of design, development, and operation of complex robotic systems. In Part I, land-based systems are examined which include multiple manipulator systems and multilegged vehicles. For multiple manipulator systems, an efficient closed chain dynamics algorithm based on the Composite Rigid Body (CRB) method is presented. To increase computational rates in an effort to achieve real-time, temporal and spatial forms of parallelism are implemented, and algorithms that are robust in the presence of manipulator singularities are developed. Then, the decoupled tree-structure (DTS) approach is used to develop a new efficient, CRB- based algorithm for legged vehicles on land. In Part II, the development of a real-time simulation system for underwater robotic vehicle (URV) systems is presented. Hydrodynamic forces on submerged rigid bodies are investigated, and an efficient dynamic and hydrodynamic simulation algorithm based on the Articulated Body (AB) method is developed. Finally, an implementation of this algorithm capable of simulating a general class of tree structured mechanisms having star topologies is undertaken. Object oriented design techniques such as object hierarchies, encapsulation, inheritance, and polymorphism are applied to this task and a general but very efficient implementation results.Naval Postgraduate Schoo

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected
    corecore