225 research outputs found

    Covert voice over internet protocol communications with packet loss based on fractal interpolation

    Get PDF
    The last few years have witnessed an explosive growth in the research of information hiding in multimedia objects, but few studies have taken into account packet loss in multimedia networks. As one of the most popular real-time services in the Internet, Voice over Internet Protocol (VoIP) contributes to a large part of network traffic for its advantages of real time, high flow, and low cost. So packet loss is inevitable in multimedia networks and affects the performance of VoIP communications. In this study, a fractal-based VoIP steganographic approach was proposed to realise covert VoIP communications in the presence of packet loss. In the proposed scheme, secret data to be hidden were divided into blocks after being encrypted with the block cipher, and each block of the secret data was then embedded into VoIP streaming packets. The VoIP packets went through a packet loss system based on Gilbert model which simulates a real network situation. And a prediction model based on fractal interpolation was built to decide whether a VoIP packet was suitable for data hiding. The experimental results indicated that the speech quality degradation increased with the escalating packet-loss level. The average variance of speech quality metrics (PESQ score) between the "no-embedding" speech samples and the “with-embedding” stego-speech samples was about 0.717, and the variances narrowed with the increasing packet-loss level. Both the average PESQ scores and the SNR values of stego-speech samples and the data retrieving rates had almost the same varying trends when the packet-loss level increased, indicating that the success rate of the fractal prediction model played an important role in the performance of covert VoIP communications

    Classifiers and machine learning techniques for image processing and computer vision

    Get PDF
    Orientador: Siome Klein GoldensteinTese (doutorado) - Universidade Estadual de Campinas, Instituto da ComputaçãoResumo: Neste trabalho de doutorado, propomos a utilizaçãoo de classificadores e técnicas de aprendizado de maquina para extrair informações relevantes de um conjunto de dados (e.g., imagens) para solução de alguns problemas em Processamento de Imagens e Visão Computacional. Os problemas de nosso interesse são: categorização de imagens em duas ou mais classes, detecçãao de mensagens escondidas, distinção entre imagens digitalmente adulteradas e imagens naturais, autenticação, multi-classificação, entre outros. Inicialmente, apresentamos uma revisão comparativa e crítica do estado da arte em análise forense de imagens e detecção de mensagens escondidas em imagens. Nosso objetivo é mostrar as potencialidades das técnicas existentes e, mais importante, apontar suas limitações. Com esse estudo, mostramos que boa parte dos problemas nessa área apontam para dois pontos em comum: a seleção de características e as técnicas de aprendizado a serem utilizadas. Nesse estudo, também discutimos questões legais associadas a análise forense de imagens como, por exemplo, o uso de fotografias digitais por criminosos. Em seguida, introduzimos uma técnica para análise forense de imagens testada no contexto de detecção de mensagens escondidas e de classificação geral de imagens em categorias como indoors, outdoors, geradas em computador e obras de arte. Ao estudarmos esse problema de multi-classificação, surgem algumas questões: como resolver um problema multi-classe de modo a poder combinar, por exemplo, caracteríisticas de classificação de imagens baseadas em cor, textura, forma e silhueta, sem nos preocuparmos demasiadamente em como normalizar o vetor-comum de caracteristicas gerado? Como utilizar diversos classificadores diferentes, cada um, especializado e melhor configurado para um conjunto de caracteristicas ou classes em confusão? Nesse sentido, apresentamos, uma tecnica para fusão de classificadores e caracteristicas no cenário multi-classe através da combinação de classificadores binários. Nós validamos nossa abordagem numa aplicação real para classificação automática de frutas e legumes. Finalmente, nos deparamos com mais um problema interessante: como tornar a utilização de poderosos classificadores binarios no contexto multi-classe mais eficiente e eficaz? Assim, introduzimos uma tecnica para combinação de classificadores binarios (chamados classificadores base) para a resolução de problemas no contexto geral de multi-classificação.Abstract: In this work, we propose the use of classifiers and machine learning techniques to extract useful information from data sets (e.g., images) to solve important problems in Image Processing and Computer Vision. We are particularly interested in: two and multi-class image categorization, hidden messages detection, discrimination among natural and forged images, authentication, and multiclassification. To start with, we present a comparative survey of the state-of-the-art in digital image forensics as well as hidden messages detection. Our objective is to show the importance of the existing solutions and discuss their limitations. In this study, we show that most of these techniques strive to solve two common problems in Machine Learning: the feature selection and the classification techniques to be used. Furthermore, we discuss the legal and ethical aspects of image forensics analysis, such as, the use of digital images by criminals. We introduce a technique for image forensics analysis in the context of hidden messages detection and image classification in categories such as indoors, outdoors, computer generated, and art works. From this multi-class classification, we found some important questions: how to solve a multi-class problem in order to combine, for instance, several different features such as color, texture, shape, and silhouette without worrying about the pre-processing and normalization of the combined feature vector? How to take advantage of different classifiers, each one custom tailored to a specific set of classes in confusion? To cope with most of these problems, we present a feature and classifier fusion technique based on combinations of binary classifiers. We validate our solution with a real application for automatic produce classification. Finally, we address another interesting problem: how to combine powerful binary classifiers in the multi-class scenario more effectively? How to boost their efficiency? In this context, we present a solution that boosts the efficiency and effectiveness of multi-class from binary techniques.DoutoradoEngenharia de ComputaçãoDoutor em Ciência da Computaçã

    Comparison of Steganography Using the Discrete Cosine Transform Method on Image Based Bilinear, Nearest Neighbor and Spline Interpolation

    Get PDF
    The research was conducted in the field of steganography. Discrete Cosine Transform (DCT) is a method used in the insertion technique. The results of steganography have problems if they look blurry, have low levels of similarity and high error values. One way to solve this problem is by proposing image interpolation. The interpolation method consists of various kinds and gives each other advantages. This study intends to compare three kinds of interpolation techniques to find the best one. The three interpolation techniques are bilinear, nearest neighbor, and spline. The method used in this research is experimental. Images with extension formats * .tif, * .png, and * .bmp with dimensions of 512x512 px are interpolated by scaling 1.5, 2, and 4. The results of the interpolation process are used to insert messages in * .txt format of 157 bytes with discrete cosines transform (DCT). The image quality of the message insertion is measured by the MSE and PSNR values. The result of the message insertion test shows that the value of the image quality is directly proportional, meaning that if the condition of the message size is fixed and the cover dimensions are greater, the MSE value will be smaller and the PSNR value will be greater. Images with * .tif and * .bmp extension formats have good stability, * .png images vary in size. The smallest error value test results were obtained in the spline interpolation technique and this method when compared to the other two techniques had the lowest average MSE value of 8.221 and the PSNR value of 40,301 dB

    A secured data hiding using affine transformation in video steganography

    Get PDF
    Network security is the most essential aspect of information technology among today’s emerging digital technologies which demands secured communication of information. In this digital network, it is essential to secure the data from intruders and unauthorized receivers. Steganography plays a vital role in secure transmission of data. This paper proposes a steganography method to hide data using affine transformation technique. The secret data are embedded in the coefficients of integer wavelet transform of the video frames. While embedding, the pixel values are distributed using affine transformation. The proposed method has been tested on many input data and the performance is evaluated both quantitatively and qualitatively. The results indicate the enhanced capability of the proposed method that can ensure imperceptible distortions with minimum computational cost in terms of PSNR factor over the existing methods

    Image Steganography using Hybrid Edge Detector and Ridgelet Transform

    Get PDF
    Steganography is the art of hiding high sensitive information in digital image, text, video, and audio. In this paper, authors have proposed a frequency domain steganography method operating in the Ridgelet transform. Authors engage the advantage of ridgelet transform, which represents the digital image with straight edges. In the embedding phase, the proposed hybrid edge detector acts as a preprocessing step to obtain the edge image from the cover image, then the edge image is partitioned into several blocks to operate with straight edges and Ridgelet transform is applied to each block. Then, the most significant gradient vectors (or significant edges) are selected to embed the secret data. The proposed method has shown the advantages of imperceptibility of the stego image is increased because the secret data is hidden in the significant gradient vector. Authors employed the hybrid edge detector to obtain the edge image, which increases the embedding capacity. Experimental results demonstrates that peak signal-to-noise (PSNR) ratio of stego image generated by this method versus the cover image is guaranteed to be above 49 dB. PSNR is much higher than that of all data hiding techniques reported in the literature.Defence Science Journal, Vol. 65, No. 3, May 2015, pp.214-219, DOI: http://dx.doi.org/10.14429/dsj.65.787

    Exploiting loop transformations for the protection of software

    Get PDF
    Il software conserva la maggior parte del know-how che occorre per svilupparlo. Poich\ue9 oggigiorno il software pu\uf2 essere facilmente duplicato e ridistribuito ovunque, il rischio che la propriet\ue0 intellettuale venga violata su scala globale \ue8 elevato. Una delle pi\uf9 interessanti soluzioni a questo problema \ue8 dotare il software di un watermark. Ai watermark si richiede non solo di certificare in modo univoco il proprietario del software, ma anche di essere resistenti e pervasivi. In questa tesi riformuliamo i concetti di robustezza e pervasivit\ue0 a partire dalla semantica delle tracce. Evidenziamo i cicli quali costrutti di programmazione pervasivi e introduciamo le trasformazioni di ciclo come mattone di costruzione per schemi di watermarking pervasivo. Passiamo in rassegna alcune fra tali trasformazioni, studiando i loro principi di base. Infine, sfruttiamo tali principi per costruire una tecnica di watermarking pervasivo. La robustezza rimane una difficile, quanto affascinante, questione ancora da risolvere.Software retains most of the know-how required fot its development. Because nowadays software can be easily cloned and spread worldwide, the risk of intellectual property infringement on a global scale is high. One of the most viable solutions to this problem is to endow software with a watermark. Good watermarks are required not only to state unambiguously the owner of software, but also to be resilient and pervasive. In this thesis we base resiliency and pervasiveness on trace semantics. We point out loops as pervasive programming constructs and we introduce loop transformations as the basic block of pervasive watermarking schemes. We survey several loop transformations, outlining their underlying principles. Then we exploit these principles to build some pervasive watermarking techniques. Resiliency still remains a big and challenging open issue

    Designing Secure and Survivable Stegosystems

    Get PDF
    Steganography, the art and science of carrying out hidden communication, is an emergingsub-discipline of information security. Unlike cryptography, steganography conceals the existenceof a secret message by embedding it in an innocuous container digital media, thereby enablingunobstrusive communication over insecure channels. Detection and extraction of steganographiccontents is another challenge for the information security professional and this activity iscommonly known as steganalysis. Recent progress in steganalysis has posed a challenge fordesign and development of stegosystems with high levels of security and survivability. In thispaper, different strategies have been presented that can be used to escape detection and foilan eavesdropper having high technical capabilities as well as adequate infrastructure. Based onthe strength and weaknesses of current steganographic schemes, ideas have been progressedto make detection and destruction of hidden information more difficult

    Image Encryption and Stegenography Based on Computational Single Pixel Imaging

    Get PDF
    Multiple layers of information security are introduced based on computational ghost imaging (CGI). We show, in the first step, that it is possible to design a very reliable image encryption scheme using 3D computational ghost imaging with two single-pixel detectors sending data through two channels. Through the Normalized Root Mean Square scale, it is then shown that a further level of security can be achieved by merging data-carrying channels into one and using a coded order for their placement in the sequence of bucket data carried by the single channel. Yet another layer of security is introduced through hiding the actual grayscale image inside another image such that the hidden image cannot be recognized by naked eyes. We then retrieve the hidden image from a CGI reconstructed image. It is shown that the proposed scheme increases the security and robustness such that an attacker needs more than 96 percent of the coded order to recover the hidden data. Storing a grayscale image in a ghost image and retrieving different intensities for the hidden image is unprecedented and could be of interest to the information security community
    corecore