2,122 research outputs found

    Object-Based Crop Classification with Landsat-MODIS Enhanced Time-Series Data

    Get PDF
    Cropland mapping via remote sensing can provide crucial information for agri-ecological studies. Time series of remote sensing imagery is particularly useful for agricultural land classification. This study investigated the synergistic use of feature selection, Object-Based Image Analysis (OBIA) segmentation and decision tree classification for cropland mapping using a finer temporal-resolution Landsat-MODIS Enhanced time series in 2007. The enhanced time series extracted 26 layers of Normalized Difference Vegetation Index (NDVI) and five NDVI Time Series Indices (TSI) in a subset of agricultural land of Southwest Missouri. A feature selection procedure using the Stepwise Discriminant Analysis (SDA) was performed, and 10 optimal features were selected as input data for OBIA segmentation, with an optimal scale parameter obtained by quantification assessment of topological and geometric object differences. Using the segmented metrics in a decision tree classifier, an overall classification accuracy of 90.87% was achieved. Our study highlights the advantage of OBIA segmentation and classification in reducing noise from in-field heterogeneity and spectral variation. The crop classification map produced at 30 m resolution provides spatial distributions of annual and perennial crops, which are valuable for agricultural monitoring and environmental assessment studies

    A multi-temporal phenology based classification approach for Crop Monitoring in Kenya

    Get PDF
    The SBAM (Satellite Based Agricultural Monitoring) project, funded by the Italian Space Agency aims at: developing a validated satellite imagery based method for estimating and updating the agricultural areas in the region of Central-Africa; implementing an automated process chain capable of providing periodical agricultural land cover maps of the area of interest and, possibly, an estimate of the crop yield. The project aims at filling the gap existing in the availability of high spatial resolution maps of the agricultural areas of Kenya. A high spatial resolution land cover map of Central-Eastern Africa including Kenya was compiled in the year 2000 in the framework of the Africover project using Landsat images acquired, mostly, in 1995. We investigated the use of phenological information in supporting the use of remotely sensed images for crop classification and monitoring based on Landsat 8 and, in the near future, Sentinel 2 imagery. Phenological information on crop condition was collected using time series of NDVI (Normalized Difference Vegetation Index) based on Landsat 8 images. Kenyan countryside is mainly characterized by a high number of fragmented small and medium size farmlands that dramatically increase the difficulty in classification; 30 m spatial resolution images are not enough for a proper classification of such areas. So, a pan-sharpening FIHS (Fast Intensity Hue Saturation) technique was implemented to increase image resolution from 30 m to 15 m. Ground test sites were selected, searching for agricultural vegetated areas from which phenological information was extracted. Therefore, the classification of agricultural areas is based on crop phenology, vegetation index behaviour retrieved from a time series of satellite images and on AEZ (Agro Ecological Zones) information made available by FAO (FAO, 1996) for the area of interest. This paper presents the results of the proposed classification procedure in comparison with land cover maps produced in the past years by other projects. The results refer to the Nakuru County and they were validated using field campaigns data. It showed a satisfactory overall accuracy of 92.66 % which is a significant improvement with respect to previous land cover maps

    Comparison of Five Spatio-Temporal Satellite Image Fusion Models over Landscapes with Various Spatial Heterogeneity and Temporal Variation

    Get PDF
    In recent years, many spatial and temporal satellite image fusion (STIF) methods have been developed to solve the problems of trade-off between spatial and temporal resolution of satellite sensors. This study, for the first time, conducted both scene-level and local-level comparison of five state-of-art STIF methods from four categories over landscapes with various spatial heterogeneity and temporal variation. The five STIF methods include the spatial and temporal adaptive reflectance fusion model (STARFM) and Fit-FC model from the weight function-based category, an unmixing-based data fusion (UBDF) method from the unmixing-based category, the one-pair learning method from the learning-based category, and the Flexible Spatiotemporal DAta Fusion (FSDAF) method from hybrid category. The relationship between the performances of the STIF methods and scene-level and local-level landscape heterogeneity index (LHI) and temporal variation index (TVI) were analyzed. Our results showed that (1) the FSDAF model was most robust regardless of variations in LHI and TVI at both scene level and local level, while it was less computationally efficient than the other models except for one-pair learning; (2) Fit-FC had the highest computing efficiency. It was accurate in predicting reflectance but less accurate than FSDAF and one-pair learning in capturing image structures; (3) One-pair learning had advantages in prediction of large-area land cover change with the capability of preserving image structures. However, it was the least computational efficient model; (4) STARFM was good at predicting phenological change, while it was not suitable for applications of land cover type change; (5) UBDF is not recommended for cases with strong temporal changes or abrupt changes. These findings could provide guidelines for users to select appropriate STIF method for their own applications

    Applications of ISES for vegetation and land use

    Get PDF
    Remote sensing relative to applications involving vegetation cover and land use is reviewed to consider the potential benefits to the Earth Observing System (Eos) of a proposed Information Sciences Experiment System (ISES). The ISES concept has been proposed as an onboard experiment and computational resource to support advanced experiments and demonstrations in the information and earth sciences. Embedded in the concept is potential for relieving the data glut problem, enhancing capabilities to meet real-time needs of data users and in-situ researchers, and introducing emerging technology to Eos as the technology matures. These potential benefits are examined in the context of state-of-the-art research activities in image/data processing and management

    Improvement in Land Cover and Crop Classification based on Temporal Features Learning from Sentinel-2 Data Using Recurrent-Convolutional Neural Network (R-CNN)

    Get PDF
    Understanding the use of current land cover, along with monitoring change over time, is vital for agronomists and agricultural agencies responsible for land management. The increasing spatial and temporal resolution of globally available satellite images, such as provided by Sentinel-2, creates new possibilities for researchers to use freely available multi-spectral optical images, with decametric spatial resolution and more frequent revisits for remote sensing applications such as land cover and crop classification (LC&CC), agricultural monitoring and management, environment monitoring. Existing solutions dedicated to cropland mapping can be categorized based on per-pixel based and object-based. However, it is still challenging when more classes of agricultural crops are considered at a massive scale. In this paper, a novel and optimal deep learning model for pixel-based LC&CC is developed and implemented based on Recurrent Neural Networks (RNN) in combination with Convolutional Neural Networks (CNN) using multi-temporal sentinel-2 imagery of central north part of Italy, which has diverse agricultural system dominated by economic crop types. The proposed methodology is capable of automated feature extraction by learning time correlation of multiple images, which reduces manual feature engineering and modeling crop phenological stages. Fifteen classes, including major agricultural crops, were considered in this study. We also tested other widely used traditional machine learning algorithms for comparison such as support vector machine SVM, random forest (RF), Kernal SVM, and gradient boosting machine, also called XGBoost. The overall accuracy achieved by our proposed Pixel R-CNN was 96.5%, which showed considerable improvements in comparison with existing mainstream methods. This study showed that Pixel R-CNN based model offers a highly accurate way to assess and employ time-series data for multi-temporal classification tasks

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Using Landsat 8 image time series for crop mapping in a region of Cerrado, Brazil.

    Get PDF
    Abstract: The objective of this research is to classify agricultural land use in a region of the Cerrado (Brazilian Savanna) biome using a time series of Enhanced Vegetation Index (EVI) from Landsat 8 OLI. Phenological metrics extracted from EVI time series, a Random Forest algorithm and data mining techniques are used in the process of classification. The area of study is a region in the Cerrado in a region of the municipality of Casa Branca, São Paulo state, Brazil. The results are encouraging and demonstrate the potential of phenological parameters obtained from time series of OLI vegetation indices for agricultural land use classification

    Use and Improvement of Remote Sensing and Geospatial Technologies in Support of Crop Area and Yield Estimations in the West African Sahel

    Get PDF
    In arid and semi-arid West Africa, agricultural production and regional food security depend largely on small-scale subsistence farming and rainfed crops, both of which are vulnerable to climate variability and drought. Efforts made to improve crop monitoring and our ability to estimate crop production (areas planted and yield estimations by crop type) in the major agricultural zones of the region are critical paths for minimizing climate risks and to support food security planning. The main objective of this dissertation research was to contribute to these efforts using remote sensing technologies. In this regard, the first analysis documented the low reliability of existing land cover products for cropland area estimation (Chapter 2). Then two satellite remote sensing-based datasets were developed that 1) accurately map cropland areas in the five countries of Sahelian West Africa (Senegal, Mauritania, Mali, Burkina Faso and Niger; Chapter 3), and 2) focus on the country of Mali to identify the location and prevalence of the major subsistence crops (millet, sorghum, maize and non-irrigated rice; Chapter 4). The regional cropland area product is distributed as the West African Sahel Cropland area at 30 m (WASC30). The development of the new dataset involved high density training data (380,000 samples) developed by USGS in collaboration with CILSS for training about 200 locally optimized random forest (RF) classifiers using Landsat 8 surface reflectances and vegetation indices and the Google Earth Engine platform. WASC30 greatly improves earlier estimates through inclusion of cropland information for both rainfed and irrigated areas mapped with a class-specific accuracy of 79% across the West Africa Sahel. Used as a mask in crop monitoring systems, the new cropland area data could bring critical insights by reducing uncertainties in xv identification of croplands as crop growth condition metrics are extracted. WASC30 allowed us to derive detailed statistics on cultivated areas in the Sahel, at country and agroclimatic scales. Intensive agricultural zones were highlighted as well. The second dataset, mapping crop types for the country of Mali, is meant to separate signals of different crop types for improved crop yield estimation. The crop type map was used to derive detailed agricultural statistics (e.g. acreage by crop types, spatial distribution) at finer administrative scales than has previously been possible. The crop fraction information by crop type extracted from the map, gives additional details on farmers preferences by regions, and the natural adaptability of different crop types. The final analysis of this dissertation explores the use of ensemble machine learning techniques to predict maize yield in Mali (Chapter 5). Climate data (precipitation and temperature), and vegetation indices (Normalized Difference Vegetation Index, NDVI, the Enhanced Vegetation Index, EVI, and the Normalized Difference Water Index, NDWI) are used as predictors, while actual yields collected in 2017 by the Malian Ministry of Agriculture are the reference data. Random forest presented better predictive performance as compared to boosted regression trees (BRT). Results showed that climate variables have more predictive power for maize yield compared to vegetation indices. Among vegetation indices, the NDWI appeared to be the most influential predictor, maybe because of water requirement of maize and the sensitivity of this index to water in semi-arid regions. Tested with two different independent datasets, one constituted by 20% of the reference information, and another including observed yields for year 2018 (a one-year-left analysis), maize yield predictions were promising for year 2017 (RMSE = 362 kg/ha), but showed higher error for 2018 (RMSE = 707 kg/ha). That is, the fitted model may not capture accurately year to year variabilities in predicted maize yield. In this analysis, predictions were limited to field samples (~600 fields) across the country of Mali. It would be valuable in the future to predict maize yield for each pixel of the new developed crop type map. That will lead to a detailed spatial analysis of maize yield, allowing identification of low yielding regions for targeted interventions which could improve food security. Keywords: Agricultural identification of croplands as crop growth condition metrics are extracted. WASC30 allowed us to derive detailed statistics on cultivated areas in the Sahel, at country and agroclimatic scales. Intensive agricultural zones were highlighted as well. The second dataset, mapping crop types for the country of Mali, is meant to separate signals of different crop types for improved crop yield estimation. The crop type map was used to derive detailed agricultural statistics (e.g. acreage by crop types, spatial distribution) at finer administrative scales than has previously been possible. The crop fraction information by crop type extracted from the map, gives additional details on farmers preferences by regions, and the natural adaptability of different crop types. The final analysis of this dissertation explores the use of ensemble machine learning techniques to predict maize yield in Mali (Chapter 5). Climate data (precipitation and temperature), and vegetation indices (Normalized Difference Vegetation Index, NDVI, the Enhanced Vegetation Index, EVI, and the Normalized Difference Water Index, NDWI) are used as predictors, while actual yields collected in 2017 by the Malian Ministry of Agriculture are the reference data. Random forest presented better predictive performance as compared to boosted regression trees (BRT). Results showed that climate variables have more predictive power for maize yield compared to vegetation indices. Among vegetation indices, the NDWI appeared to be the most influential predictor, maybe because of water requirement of maize and the sensitivity of this index to water in semi-arid regions. Tested with two different independent datasets, one constituted by 20% of the reference information, and another including observed yields for year 2018 (a one-year-left analysis), maize yield predictions were promising for year 2017 (RMSE = 362 kg/ha), but showed higher error for 2018 (RMSE = 707 kg/ha). That is, the fitted model may not capture accurately year to year variabilities in predicted maize yield. In this analysis, predictions were limited to field samples (~600 fields) across the country of Mali. It would be valuable in the future to predict maize yield for each pixel of the new developed crop type map. That will lead to a detailed spatial analysis of maize yield, allowing identification of low yielding regions for targeted interventions which could improve food security
    corecore