2,739 research outputs found

    Degraded Visual Environment Tracker

    Get PDF
    Compressive Sensing (CS) has proven its ability to reduce the number of measurements required to reproduce images with similar quality to those reconstructed by observing the Shannon-Nyquest sampling criteria. By exploiting spatial redundancies, it was shown that CS can be used to denoise and enhance image quality. In this thesis we propose a method that incorporates an efficient use of CS to locate a specific object in zero-visibility environments. This method was developed after multiple implementations of dictionary learning, reconstruction, detection, and tracking algorithms in order to identify the shortcomings of existing techniques and enhance our results. We show that with the use of an over-complete dictionary of the target our technique can perceive the location of the target from hidden information in the scene. This thesis will summarize the previously implemented algorithms, detail the shortcomings evident in their outputs, explain our setups, and present quantified results to support its efficacy in the results section

    Feature-Aided Multitarget Tracking for Optical Belt Sorters

    Get PDF

    Deeply-Integrated Feature Tracking for Embedded Navigation

    Get PDF
    The Air Force Institute of Technology (AFIT) is investigating techniques to improve aircraft navigation using low-cost imaging and inertial sensors. Stationary features tracked within the image are used to improve the inertial navigation estimate. These features are tracked using a correspondence search between frames. Previous research investigated aiding these correspondence searches using inertial measurements (i.e., stochastic projection). While this research demonstrated the benefits of further sensor integration, it still relied on robust feature descriptors (e.g., SIFT or SURF) to obtain a reliable correspondence match in the presence of rotation and scale changes. Unfortunately, these robust feature extraction algorithms are computationally intensive and require significant resources for real-time operation. Simpler feature extraction algorithms are much more efficient, but their feature descriptors are not invariant to scale, rotation, or affine warping which limits matching performance during arbitrary motion. This research uses inertial measurements to predict not only the location of the feature in the next image but also the feature descriptor, resulting in robust correspondence matching with low computational overhead. This novel technique, called deeply-integrated feature tracking, is exercised using real imagery. The term deep integration is derived from the fact inertial information is used to aid the image processing. The navigation experiments presented demonstrate the performance of the new algorithm in relation to the previous work. Further experiments also investigate a monocular camera setup necessary for actual flight testing. Results show that the new algorithm is 12 times faster than its predecessor while still producing an accurate trajectory. Thirty-percent more features were initialized using the new tracker over the previous algorithm. However, low-level aiding techniques successfully reduced the number of features initialized indicating a more robust tracking solution through deep integration
    • …
    corecore