528,484 research outputs found

    A correspondence-based neural mechanism for position invariant feature processing

    Get PDF
    Poster presentation: Introduction We here focus on constructing a hierarchical neural system for position-invariant recognition, which is one of the most fundamental invariant recognition achieved in visual processing [1,2]. The invariant recognition have been hypothesized to be done by matching a sensory image of a particular object stimulated on the retina to the most suitable representation stored in memory of the higher visual cortical area. Here arises a general problem: In such a visual processing, the position of the object image on the retina must be initially uncertain. Furthermore, the retinal activities possessing sensory information are being far from the ones in the higher area with a loss of the sensory object information. Nevertheless, with such recognition ambiguity, the particular object can effortlessly and easily be recognized. Our aim in this work is an attempt to resolve such a general recognition problem. ..

    3D Object Representations for Recognition.

    Full text link
    Object recognition from images is a longstanding and challenging problem in computer vision. The main challenge is that the appearance of objects in images is affected by a number of factors, such as illumination, scale, camera viewpoint, intra-class variability, occlusion, truncation, and so on. How to handle all these factors in object recognition is still an open problem. In this dissertation, I present my efforts in building 3D object representations for object recognition. Compared to 2D appearance based object representations, 3D object representations can capture the 3D nature of objects and better handle viewpoint variation, occlusion and truncation in object recognition. I introduce three new 3D object representations: the 3D aspect part representation, the 3D aspectlet representation and the 3D voxel pattern representation. These representations are built to handle different challenging factors in object recognition. The 3D aspect part representation is able to capture the appearance change of object categories due to viewpoint transformation. The 3D aspectlet representation and the 3D voxel pattern representation are designed to handle occlusions between objects in addition to viewpoint change. Based on these representations, we propose new object recognition methods and conduct experiments on benchmark datasets to verify the advantages of our methods. Furthermore, we introduce, PASCAL3D+, a new large scale dataset for 3D object recognition by aligning objects in images with 3D CAD models. We also propose two novel methods to tackle object co-detection and multiview object tracking using our 3D aspect part representation, and a novel Convolutional Neural Network-based approach for object detection using our 3D voxel pattern representation. In order to track multiple objects in videos, we introduce a new online multi-object tracking framework based on Markov Decision Processes. Lastly, I conclude the dissertation and discuss future steps for 3D object recognition.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120836/1/yuxiang_1.pd

    The Individual is Nothing, the Class Everything: Psychophysics and Modeling of Recognition in Obect Classes

    Get PDF
    Most psychophysical studies of object recognition have focussed on the recognition and representation of individual objects subjects had previously explicitely been trained on. Correspondingly, modeling studies have often employed a 'grandmother'-type representation where the objects to be recognized were represented by individual units. However, objects in the natural world are commonly members of a class containing a number of visually similar objects, such as faces, for which physiology studies have provided support for a representation based on a sparse population code, which permits generalization from the learned exemplars to novel objects of that class. In this paper, we present results from psychophysical and modeling studies intended to investigate object recognition in natural ('continuous') object classes. In two experiments, subjects were trained to perform subordinate level discrimination in a continuous object class - images of computer-rendered cars - created using a 3D morphing system. By comparing the recognition performance of trained and untrained subjects we could estimate the effects of viewpoint-specific training and infer properties of the object class-specific representation learned as a result of training. We then compared the experimental findings to simulations, building on our recently presented HMAX model of object recognition in cortex, to investigate the computational properties of a population-based object class representation as outlined above. We find experimental evidence, supported by modeling results, that training builds a viewpoint- and class-specific representation that supplements a pre-existing repre-sentation with lower shape discriminability but possibly greater viewpoint invariance

    Multiple-window Bag of Features for Road Environment Recognition

    Get PDF
    The idea of Bag of Features (BoF) is recently often employed for general object recognition. But, as it does not take positional relations of detected features into account, the recognition rate is still not very high for practical use. This paper proposes a method of describing the feature of an object by the BoF representation which considers positional information of the features. Although the original BoF representation is applied to an entire image, the proposed method employs multiple windows on an image. The BoF representation is applied to each of the windows to represent an object in the image interested for recognition. The performance of the proposed method is shown experimentally

    Multi-object tracking using sparse representation

    Get PDF
    Manuscript to ICASSP 2013International audienceRecently sparse representation has been successfully applied to single object tracking by observing the reconstruction error of candidate object with sparse representation. In practice, sparse representation also shows competitive performance on multi-class classification, and thus is potential for multi-object tracking. In this paper we explore this technique for on-line multi-object tracking through a simple trackingby- detection scheme, with background subtraction for object detection and sparse representation for object recognition. Final experiments demonstrate that the proposed approach only combining color histogram and 2-dimensional coordinates as features, achieves favorable performance over state-of-the-art work in persistent identity tracking
    • …
    corecore