4,219 research outputs found

    An evolutionary computational based approach towards automatic image registration

    Full text link
    Image registration is a key component of various image processing operations which involve the analysis of different image data sets. Automatic image registration domains have witnessed the application of many intelligent methodologies over the past decade; however inability to properly model object shape as well as contextual information had limited the attainable accuracy. In this paper, we propose a framework for accurate feature shape modeling and adaptive resampling using advanced techniques such as Vector Machines, Cellular Neural Network (CNN), SIFT, coreset, and Cellular Automata. CNN has found to be effective in improving feature matching as well as resampling stages of registration and complexity of the approach has been considerably reduced using corset optimization The salient features of this work are cellular neural network approach based SIFT feature point optimisation, adaptive resampling and intelligent object modelling. Developed methodology has been compared with contemporary methods using different statistical measures. Investigations over various satellite images revealed that considerable success was achieved with the approach. System has dynamically used spectral and spatial information for representing contextual knowledge using CNN-prolog approach. Methodology also illustrated to be effective in providing intelligent interpretation and adaptive resampling.Comment: arXiv admin note: substantial text overlap with arXiv:1303.671

    Leveraging Photogrammetric Mesh Models for Aerial-Ground Feature Point Matching Toward Integrated 3D Reconstruction

    Full text link
    Integration of aerial and ground images has been proved as an efficient approach to enhance the surface reconstruction in urban environments. However, as the first step, the feature point matching between aerial and ground images is remarkably difficult, due to the large differences in viewpoint and illumination conditions. Previous studies based on geometry-aware image rectification have alleviated this problem, but the performance and convenience of this strategy is limited by several flaws, e.g. quadratic image pairs, segregated extraction of descriptors and occlusions. To address these problems, we propose a novel approach: leveraging photogrammetric mesh models for aerial-ground image matching. The methods of this proposed approach have linear time complexity with regard to the number of images, can explicitly handle low overlap using multi-view images and can be directly injected into off-the-shelf structure-from-motion (SfM) and multi-view stereo (MVS) solutions. First, aerial and ground images are reconstructed separately and initially co-registered through weak georeferencing data. Second, aerial models are rendered to the initial ground views, in which the color, depth and normal images are obtained. Then, the synthesized color images and the corresponding ground images are matched by comparing the descriptors, filtered by local geometrical information, and then propagated to the aerial views using depth images and patch-based matching. Experimental evaluations using various datasets confirm the superior performance of the proposed methods in aerial-ground image matching. In addition, incorporation of the existing SfM and MVS solutions into these methods enables more complete and accurate models to be directly obtained.Comment: Accepted for publication in ISPRS Journal of Photogrammetry and Remote Sensin

    Augmented Semantic Signatures of Airborne LiDAR Point Clouds for Comparison

    Full text link
    LiDAR point clouds provide rich geometric information, which is particularly useful for the analysis of complex scenes of urban regions. Finding structural and semantic differences between two different three-dimensional point clouds, say, of the same region but acquired at different time instances is an important problem. A comparison of point clouds involves computationally expensive registration and segmentation. We are interested in capturing the relative differences in the geometric uncertainty and semantic content of the point cloud without the registration process. Hence, we propose an orientation-invariant geometric signature of the point cloud, which integrates its probabilistic geometric and semantic classifications. We study different properties of the geometric signature, which are an image-based encoding of geometric uncertainty and semantic content. We explore different metrics to determine differences between these signatures, which in turn compare point clouds without performing point-to-point registration. Our results show that the differences in the signatures corroborate with the geometric and semantic differences of the point clouds.Comment: 18 pages, 6 figures, 1 tabl

    Hyperspectral Image Classification with Markov Random Fields and a Convolutional Neural Network

    Full text link
    This paper presents a new supervised classification algorithm for remotely sensed hyperspectral image (HSI) which integrates spectral and spatial information in a unified Bayesian framework. First, we formulate the HSI classification problem from a Bayesian perspective. Then, we adopt a convolutional neural network (CNN) to learn the posterior class distributions using a patch-wise training strategy to better use the spatial information. Next, spatial information is further considered by placing a spatial smoothness prior on the labels. Finally, we iteratively update the CNN parameters using stochastic gradient decent (SGD) and update the class labels of all pixel vectors using an alpha-expansion min-cut-based algorithm. Compared with other state-of-the-art methods, the proposed classification method achieves better performance on one synthetic dataset and two benchmark HSI datasets in a number of experimental settings

    An investigation towards wavelet based optimization of automatic image registration techniques

    Full text link
    Image registration is the process of transforming different sets of data into one coordinate system and is required for various remote sensing applications like change detection, image fusion, and other related areas. The effect of increased relief displacement, requirement of more control points, and increased data volume are the challenges associated with the registration of high resolution image data. The objective of this research work is to study the most efficient techniques and to investigate the extent of improvement achievable by enhancing them with Wavelet transform. The SIFT feature based method uses the Eigen value for extracting thousands of key points based on scale invariant features and these feature points when further enhanced by the wavelet transform yields the best results

    Volumetric Super-Resolution of Multispectral Data

    Full text link
    Most multispectral remote sensors (e.g. QuickBird, IKONOS, and Landsat 7 ETM+) provide low-spatial high-spectral resolution multispectral (MS) or high-spatial low-spectral resolution panchromatic (PAN) images, separately. In order to reconstruct a high-spatial/high-spectral resolution multispectral image volume, either the information in MS and PAN images are fused (i.e. pansharpening) or super-resolution reconstruction (SRR) is used with only MS images captured on different dates. Existing methods do not utilize temporal information of MS and high spatial resolution of PAN images together to improve the resolution. In this paper, we propose a multiframe SRR algorithm using pansharpened MS images, taking advantage of both temporal and spatial information available in multispectral imagery, in order to exceed spatial resolution of given PAN images. We first apply pansharpening to a set of multispectral images and their corresponding PAN images captured on different dates. Then, we use the pansharpened multispectral images as input to the proposed wavelet-based multiframe SRR method to yield full volumetric SRR. The proposed SRR method is obtained by deriving the subband relations between multitemporal MS volumes. We demonstrate the results on Landsat 7 ETM+ images comparing our method to conventional techniques.Comment: arXiv admin note: text overlap with arXiv:1705.0125

    Machine Learning Techniques and Applications For Ground-based Image Analysis

    Full text link
    Ground-based whole sky cameras have opened up new opportunities for monitoring the earth's atmosphere. These cameras are an important complement to satellite images by providing geoscientists with cheaper, faster, and more localized data. The images captured by whole sky imagers can have high spatial and temporal resolution, which is an important pre-requisite for applications such as solar energy modeling, cloud attenuation analysis, local weather prediction, etc. Extracting valuable information from the huge amount of image data by detecting and analyzing the various entities in these images is challenging. However, powerful machine learning techniques have become available to aid with the image analysis. This article provides a detailed walk-through of recent developments in these techniques and their applications in ground-based imaging. We aim to bridge the gap between computer vision and remote sensing with the help of illustrative examples. We demonstrate the advantages of using machine learning techniques in ground-based image analysis via three primary applications -- segmentation, classification, and denoising

    Learning to Fuse Local Geometric Features for 3D Rigid Data Matching

    Full text link
    This paper presents a simple yet very effective data-driven approach to fuse both low-level and high-level local geometric features for 3D rigid data matching. It is a common practice to generate distinctive geometric descriptors by fusing low-level features from various viewpoints or subspaces, or enhance geometric feature matching by leveraging multiple high-level features. In prior works, they are typically performed via linear operations such as concatenation and min pooling. We show that more compact and distinctive representations can be achieved by optimizing a neural network (NN) model under the triplet framework that non-linearly fuses local geometric features in Euclidean spaces. The NN model is trained by an improved triplet loss function that fully leverages all pairwise relationships within the triplet. Moreover, the fused descriptor by our approach is also competitive to deep learned descriptors from raw data while being more lightweight and rotational invariant. Experimental results on four standard datasets with various data modalities and application contexts confirm the advantages of our approach in terms of both feature matching and geometric registration

    Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements

    Get PDF
    We describe a procedure to accurately measure ground deformations from optical satellite images. Precise orthorectification is obtained owing to an optimized model of the imaging system, where look directions are linearly corrected to compensate for attitude drifts, and sensor orientation uncertainties are accounted for. We introduce a new computation of the inverse projection matrices for which a rigorous resampling is proposed. The irregular resampling problem is explicitly addressed to avoid introducing aliasing in the ortho-rectified images. Image registration and correlation is achieved with a new iterative unbiased processor that estimates the phase plane in the Fourier domain for subpixel shift detection. Without using supplementary data, raw images are wrapped onto the digital elevation model and coregistered with a 1/50 pixel accuracy. The procedure applies to images from any pushbroom imaging system. We analyze its performance using Satellite pour l'Observation de la Terre (SPOT) images in the case of a null test (no coseismic deformation) and in the case of large coseismic deformations due to the Mw 7.1 Hector Mine, California, earthquake of 1999. The proposed technique would also allow precise coregistration of images for the measurement of surface displacements due to ice-flow or geomorphic processes, or for any other change detection applications. A complete software package, the Coregistration of Optically Sensed Images and Correlation, is available for download from the Caltech Tectonics Observatory website

    Automatic creation of urban velocity fields from aerial video

    Full text link
    In this paper, we present a system for modelling vehicle motion in an urban scene from low frame-rate aerial video. In particular, the scene is modelled as a probability distribution over velocities at every pixel in the image. We describe the complete system for acquiring this model. The video is captured from a helicopter and stabilized by warping the images to match an orthorectified image of the area. A pixel classifier is applied to the stabilized images, and the response is segmented to determine car locations and orientations. The results are fed in to a tracking scheme which tracks cars for three frames, creating tracklets. This allows the tracker to use a combination of velocity, direction, appearance, and acceleration cues to keep only tracks likely to be correct. Each tracklet provides a measurement of the car velocity at every point along the tracklet's length, and these are then aggregated to create a histogram of vehicle velocities at every pixel in the image. The results demonstrate that the velocity probability distribution prior can be used to infer a variety of information about road lane directions, speed limits, vehicle speeds and common trajectories, and traffic bottlenecks, as well as providing a means of describing environmental knowledge about traffic rules that can be used in tracking.Comment: 8 pages, 5 figure
    • …
    corecore