9,036 research outputs found

    AmIE: An Ambient Intelligent Environment for Assisted Living

    Full text link
    In the modern world of technology Internet-of-things (IoT) systems strives to provide an extensive interconnected and automated solutions for almost every life aspect. This paper proposes an IoT context-aware system to present an Ambient Intelligence (AmI) environment; such as an apartment, house, or a building; to assist blind, visually-impaired, and elderly people. The proposed system aims at providing an easy-to-utilize voice-controlled system to locate, navigate and assist users indoors. The main purpose of the system is to provide indoor positioning, assisted navigation, outside weather information, room temperature, people availability, phone calls and emergency evacuation when needed. The system enhances the user's awareness of the surrounding environment by feeding them with relevant information through a wearable device to assist them. In addition, the system is voice-controlled in both English and Arabic languages and the information are displayed as audio messages in both languages. The system design, implementation, and evaluation consider the constraints in common types of premises in Kuwait and in challenges, such as the training needed by the users. This paper presents cost-effective implementation options by the adoption of a Raspberry Pi microcomputer, Bluetooth Low Energy devices and an Android smart watch.Comment: 6 pages, 8 figures, 1 tabl

    Using remote vision: The effects of video image frame rate on visual object recognition performance

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.The process of using remote vision was simulated in order to determine the effects of video image frame rate on the performance in visual recognition of stationary environmental hazards in the dynamic video footage of the pedestrian travel environment. The recognition performance was assessed against two different video image frame rate variations: 25 and 2 fps. The assessment included a range of objective and subjective criteria. The obtained results show that the effects of the frame rate variations on the performance are statistically insignificant. This paper belongs to the process of development of a novel system for navigation of visually impaired pedestrians. The navigation system includes a remote vision facility, and the visual recognition of the environmental hazards by the sighted human guide is a basic activity in aiding the visually impaired user of the system in mobility

    Fine-Grained Product Class Recognition for Assisted Shopping

    Full text link
    Assistive solutions for a better shopping experience can improve the quality of life of people, in particular also of visually impaired shoppers. We present a system that visually recognizes the fine-grained product classes of items on a shopping list, in shelves images taken with a smartphone in a grocery store. Our system consists of three components: (a) We automatically recognize useful text on product packaging, e.g., product name and brand, and build a mapping of words to product classes based on the large-scale GroceryProducts dataset. When the user populates the shopping list, we automatically infer the product class of each entered word. (b) We perform fine-grained product class recognition when the user is facing a shelf. We discover discriminative patches on product packaging to differentiate between visually similar product classes and to increase the robustness against continuous changes in product design. (c) We continuously improve the recognition accuracy through active learning. Our experiments show the robustness of the proposed method against cross-domain challenges, and the scalability to an increasing number of products with minimal re-training.Comment: Accepted at ICCV Workshop on Assistive Computer Vision and Robotics (ICCV-ACVR) 201

    “Visory” Mobile Application for the Visually Impaired

    Get PDF
    Unquestionably, visual impairment severely affects the quality of life and has an impact on many daily activities of the visually impaired individuals. Visory is a mobile application that aims to assist the visually impaired individuals with visual support, through human and automated visual support. Mobile phones are a norm; thus, solutions need to be created to assist the visually impaired while lessening the chances of discrimination against these individuals. With the help of volunteers, who opt to spend their valuable time helping others, the visually impaired individuals are able to connect via video calling and inquire for visual assistance using their device camera. Visory is also equipped with three vision APIs to ease further the life of these individuals, which includes object detection, text, and image recognition. Considering the limited time and budget of the project, Agile methodology is utilized to ensure the successful development of each of the modules within the stipulated deadline. Wide range of extensive testing techniques ensured minimal crashes, and uncovered bugs rectified. Ultimately, the objectives of the project were achieved. However, there is still room for improvement that needs to be addressed in future development for further stability and performance

    Deep Thermal Imaging: Proximate Material Type Recognition in the Wild through Deep Learning of Spatial Surface Temperature Patterns

    Get PDF
    We introduce Deep Thermal Imaging, a new approach for close-range automatic recognition of materials to enhance the understanding of people and ubiquitous technologies of their proximal environment. Our approach uses a low-cost mobile thermal camera integrated into a smartphone to capture thermal textures. A deep neural network classifies these textures into material types. This approach works effectively without the need for ambient light sources or direct contact with materials. Furthermore, the use of a deep learning network removes the need to handcraft the set of features for different materials. We evaluated the performance of the system by training it to recognise 32 material types in both indoor and outdoor environments. Our approach produced recognition accuracies above 98% in 14,860 images of 15 indoor materials and above 89% in 26,584 images of 17 outdoor materials. We conclude by discussing its potentials for real-time use in HCI applications and future directions.Comment: Proceedings of the 2018 CHI Conference on Human Factors in Computing System
    • …
    corecore