10,961 research outputs found

    Learning SO(3) Equivariant Representations with Spherical CNNs

    Full text link
    We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard retrieval and classification benchmarks.Comment: Camera-ready. Accepted to ECCV'18 as oral presentatio

    From 3D Point Clouds to Pose-Normalised Depth Maps

    Get PDF
    We consider the problem of generating either pairwise-aligned or pose-normalised depth maps from noisy 3D point clouds in a relatively unrestricted poses. Our system is deployed in a 3D face alignment application and consists of the following four stages: (i) data filtering, (ii) nose tip identification and sub-vertex localisation, (iii) computation of the (relative) face orientation, (iv) generation of either a pose aligned or a pose normalised depth map. We generate an implicit radial basis function (RBF) model of the facial surface and this is employed within all four stages of the process. For example, in stage (ii), construction of novel invariant features is based on sampling this RBF over a set of concentric spheres to give a spherically-sampled RBF (SSR) shape histogram. In stage (iii), a second novel descriptor, called an isoradius contour curvature signal, is defined, which allows rotational alignment to be determined using a simple process of 1D correlation. We test our system on both the University of York (UoY) 3D face dataset and the Face Recognition Grand Challenge (FRGC) 3D data. For the more challenging UoY data, our SSR descriptors significantly outperform three variants of spin images, successfully identifying nose vertices at a rate of 99.6%. Nose localisation performance on the higher quality FRGC data, which has only small pose variations, is 99.9%. Our best system successfully normalises the pose of 3D faces at rates of 99.1% (UoY data) and 99.6% (FRGC data)
    • …
    corecore