4,694 research outputs found

    R-CNN minus R

    Full text link
    Deep convolutional neural networks (CNNs) have had a major impact in most areas of image understanding, including object category detection. In object detection, methods such as R-CNN have obtained excellent results by integrating CNNs with region proposal generation algorithms such as selective search. In this paper, we investigate the role of proposal generation in CNN-based detectors in order to determine whether it is a necessary modelling component, carrying essential geometric information not contained in the CNN, or whether it is merely a way of accelerating detection. We do so by designing and evaluating a detector that uses a trivial region generation scheme, constant for each image. Combined with SPP, this results in an excellent and fast detector that does not require to process an image with algorithms other than the CNN itself. We also streamline and simplify the training of CNN-based detectors by integrating several learning steps in a single algorithm, as well as by proposing a number of improvements that accelerate detection

    Backtracking Spatial Pyramid Pooling (SPP)-based Image Classifier for Weakly Supervised Top-down Salient Object Detection

    Full text link
    Top-down saliency models produce a probability map that peaks at target locations specified by a task/goal such as object detection. They are usually trained in a fully supervised setting involving pixel-level annotations of objects. We propose a weakly supervised top-down saliency framework using only binary labels that indicate the presence/absence of an object in an image. First, the probabilistic contribution of each image region to the confidence of a CNN-based image classifier is computed through a backtracking strategy to produce top-down saliency. From a set of saliency maps of an image produced by fast bottom-up saliency approaches, we select the best saliency map suitable for the top-down task. The selected bottom-up saliency map is combined with the top-down saliency map. Features having high combined saliency are used to train a linear SVM classifier to estimate feature saliency. This is integrated with combined saliency and further refined through a multi-scale superpixel-averaging of saliency map. We evaluate the performance of the proposed weakly supervised topdown saliency and achieve comparable performance with fully supervised approaches. Experiments are carried out on seven challenging datasets and quantitative results are compared with 40 closely related approaches across 4 different applications.Comment: 14 pages, 7 figure

    Reduced Memory Region Based Deep Convolutional Neural Network Detection

    Get PDF
    Accurate pedestrian detection has a primary role in automotive safety: for example, by issuing warnings to the driver or acting actively on car's brakes, it helps decreasing the probability of injuries and human fatalities. In order to achieve very high accuracy, recent pedestrian detectors have been based on Convolutional Neural Networks (CNN). Unfortunately, such approaches require vast amounts of computational power and memory, preventing efficient implementations on embedded systems. This work proposes a CNN-based detector, adapting a general-purpose convolutional network to the task at hand. By thoroughly analyzing and optimizing each step of the detection pipeline, we develop an architecture that outperforms methods based on traditional image features and achieves an accuracy close to the state-of-the-art while having low computational complexity. Furthermore, the model is compressed in order to fit the tight constrains of low power devices with a limited amount of embedded memory available. This paper makes two main contributions: (1) it proves that a region based deep neural network can be finely tuned to achieve adequate accuracy for pedestrian detection (2) it achieves a very low memory usage without reducing detection accuracy on the Caltech Pedestrian dataset.Comment: IEEE 2016 ICCE-Berli
    • …
    corecore