2,280 research outputs found

    Micro-Doppler Based Human-Robot Classification Using Ensemble and Deep Learning Approaches

    Full text link
    Radar sensors can be used for analyzing the induced frequency shifts due to micro-motions in both range and velocity dimensions identified as micro-Doppler (μ\boldsymbol{\mu}-D) and micro-Range (μ\boldsymbol{\mu}-R), respectively. Different moving targets will have unique μ\boldsymbol{\mu}-D and μ\boldsymbol{\mu}-R signatures that can be used for target classification. Such classification can be used in numerous fields, such as gait recognition, safety and surveillance. In this paper, a 25 GHz FMCW Single-Input Single-Output (SISO) radar is used in industrial safety for real-time human-robot identification. Due to the real-time constraint, joint Range-Doppler (R-D) maps are directly analyzed for our classification problem. Furthermore, a comparison between the conventional classical learning approaches with handcrafted extracted features, ensemble classifiers and deep learning approaches is presented. For ensemble classifiers, restructured range and velocity profiles are passed directly to ensemble trees, such as gradient boosting and random forest without feature extraction. Finally, a Deep Convolutional Neural Network (DCNN) is used and raw R-D images are directly fed into the constructed network. DCNN shows a superior performance of 99\% accuracy in identifying humans from robots on a single R-D map.Comment: 6 pages, accepted in IEEE Radar Conference 201

    Handling Uncertainty in Social Lending Credit Risk Prediction with a Choquet Fuzzy Integral Model

    Full text link
    As one of the main business models in the financial technology field, peer-to-peer (P2P) lending has disrupted traditional financial services by providing an online platform for lending money that has remarkably reduced financial costs. However, the inherent uncertainty in P2P loans can result in huge financial losses for P2P platforms. Therefore, accurate risk prediction is critical to the success of P2P lending platforms. Indeed, even a small improvement in credit risk prediction would be of benefit to P2P lending platforms. This paper proposes an innovative credit risk prediction framework that fuses base classifiers based on a Choquet fuzzy integral. Choquet integral fusion improves creditworthiness evaluations by synthesizing the prediction results of multiple classifiers and finding the largest consistency between outcomes among conflicting and consistent results. The proposed model was validated through experimental analysis on a real- world dataset from a well-known P2P lending marketplace. The empirical results indicate that the combination of multiple classifiers based on fuzzy Choquet integrals outperforms the best base classifiers used in credit risk prediction to date. In addition, the proposed methodology is superior to some conventional combination techniques

    Efficient image retrieval by fuzzy rules from boosting and metaheuristic

    Get PDF
    Fast content-based image retrieval is still a challenge for computer systems. We present a novel method aimed at classifying images by fuzzy rules and local image features. The fuzzy rule base is generated in the first stage by a boosting procedure. Boosting meta-learning is used to find the most representative local features. We briefly explore the utilization of metaheuristic algorithms for the various tasks of fuzzy systems optimization. We also provide a comprehensive description of the current best-performing DISH algorithm, which represents a powerful version of the differential evolution algorithm with effective embedded mechanisms for stronger exploration and preservation of the population diversity, designed for higher dimensional and complex optimization tasks. The algorithm is used to fine-tune the fuzzy rule base. The fuzzy rules can also be used to create a database index to retrieve images similar to the query image fast. The proposed approach is tested on a state-of-the-art image dataset and compared with the bag-of-features image representation model combined with the Support Vector Machine classification. The novel method gives a better classification accuracy, and the time of the training and testing process is significantly shorter. © 2020 Marcin Korytkowski et al., published by Sciendo.program of the Polish Minister of Science and Higher Education under the name "Regional Initiative of Excellence" in the years 2019-2022 [020/RID/2018/19

    The Superiority of the Ensemble Classification Methods: A Comprehensive Review

    Get PDF
    The modern technologies, which are characterized by cyber-physical systems and internet of things expose organizations to big data, which in turn can be processed to derive actionable knowledge. Machine learning techniques have vastly been employed in both supervised and unsupervised environments in an effort to develop systems that are capable of making feasible decisions in light of past data. In order to enhance the accuracy of supervised learning algorithms, various classification-based ensemble methods have been developed. Herein, we review the superiority exhibited by ensemble learning algorithms based on the past that has been carried out over the years. Moreover, we proceed to compare and discuss the common classification-based ensemble methods, with an emphasis on the boosting and bagging ensemble-learning models. We conclude by out setting the superiority of the ensemble learning models over individual base learners. Keywords: Ensemble, supervised learning, Ensemble model, AdaBoost, Bagging, Randomization, Boosting, Strong learner, Weak learner, classifier fusion, classifier selection, Classifier combination. DOI: 10.7176/JIEA/9-5-05 Publication date: August 31st 2019
    • …
    corecore