6,046 research outputs found

    The computational magic of the ventral stream

    Get PDF
    I argue that the sample complexity of (biological, feedforward) object recognition is mostly due to geometric image transformations and conjecture that a main goal of the ventral stream – V1, V2, V4 and IT – is to learn-and-discount image transformations.

In the first part of the paper I describe a class of simple and biologically plausible memory-based modules that learn transformations from unsupervised visual experience. The main theorems show that these modules provide (for every object) a signature which is invariant to local affine transformations and approximately invariant for other transformations. I also prove that,
in a broad class of hierarchical architectures, signatures remain invariant from layer to layer. The identification of these memory-based modules with complex (and simple) cells in visual areas leads to a theory of invariant recognition for the ventral stream.

In the second part, I outline a theory about hierarchical architectures that can learn invariance to transformations. I show that the memory complexity of learning affine transformations is drastically reduced in a hierarchical architecture that factorizes transformations in terms of the subgroup of translations and the subgroups of rotations and scalings. I then show how translations are automatically selected as the only learnable transformations during development by enforcing small apertures – eg small receptive fields – in the first layer.

In a third part I show that the transformations represented in each area can be optimized in terms of storage and robustness, as a consequence determining the tuning of the neurons in the area, rather independently (under normal conditions) of the statistics of natural images. I describe a model of learning that can be proved to have this property, linking in an elegant way the spectral properties of the signatures with the tuning of receptive fields in different areas. A surprising implication of these theoretical results is that the computational goals and some of the tuning properties of cells in the ventral stream may follow from symmetry properties (in the sense of physics) of the visual world through a process of unsupervised correlational learning, based on Hebbian synapses. In particular, simple and complex cells do not directly care about oriented bars: their tuning is a side effect of their role in translation invariance. Across the whole ventral stream the preferred features reported for neurons in different areas are only a symptom of the invariances computed and represented.

The results of each of the three parts stand on their own independently of each other. Together this theory-in-fieri makes several broad predictions, some of which are:

-invariance to small transformations in early areas (eg translations in V1) may underly stability of visual perception (suggested by Stu Geman);

-each cell’s tuning properties are shaped by visual experience of image transformations during developmental and adult plasticity;

-simple cells are likely to be the same population as complex cells, arising from different convergence of the Hebbian learning rule. The input to complex “complex” cells are dendritic branches with simple cell properties;

-class-specific transformations are learned and represented at the top of the ventral stream hierarchy; thus class-specific modules such as faces, places and possibly body areas should exist in IT;

-the type of transformations that are learned from visual experience depend on the size of the receptive fields and thus on the area (layer in the models) – assuming that the size increases with layers;

-the mix of transformations learned in each area influences the tuning properties of the cells oriented bars in V1+V2, radial and spiral patterns in V4 up to class specific tuning in AIT (eg face tuned cells);

-features must be discriminative and invariant: invariance to transformations is the primary determinant of the tuning of cortical neurons rather than statistics of natural images.

The theory is broadly consistent with the current version of HMAX. It explains it and extend it in terms of unsupervised learning, a broader class of transformation invariance and higher level modules. The goal of this paper is to sketch a comprehensive theory with little regard for mathematical niceties. If the theory turns out to be useful there will be scope for deep mathematics, ranging from group representation tools to wavelet theory to dynamics of learning

    The Computational Magic of the Ventral Stream: Towards a Theory

    Get PDF
    I conjecture that the sample complexity of object recognition is mostly due to geometric image transformations and that a main goal of the ventral stream – V1, V2, V4 and IT – is to learn-and-discount image transformations. The most surprising implication of the theory emerging from these assumptions is that the computational goals and detailed properties of cells in the ventral stream follow from symmetry properties of the visual world through a process of unsupervised correlational learning.

From the assumption of a hierarchy of areas with receptive fields of increasing size the theory predicts that the size of the receptive fields determines which transformations are learned during development and then factored out during normal processing; that the transformation represented in each area determines the tuning of the neurons in the aerea, independently of the statistics of natural images; and that class-specific transformations are learned and represented at the top of the ventral stream hierarchy.

Some of the main predictions of this theory-in-fieri are:
1. the type of transformation that are learned from visual experience depend on the size (measured in terms of wavelength) and thus on the area (layer in the models) – assuming that the aperture size increases with layers;
2. the mix of transformations learned determine the properties of the receptive fields – oriented bars in V1+V2, radial and spiral patterns in V4 up to class specific tuning in AIT (eg face tuned cells);
3. invariance to small translations in V1 may underly stability of visual perception
4. class-specific modules – such as faces, places and possibly body areas – should exist in IT to process images of object classes

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Representations for Cognitive Vision : a Review of Appearance-Based, Spatio-Temporal, and Graph-Based Approaches

    Get PDF
    The emerging discipline of cognitive vision requires a proper representation of visual information including spatial and temporal relationships, scenes, events, semantics and context. This review article summarizes existing representational schemes in computer vision which might be useful for cognitive vision, a and discusses promising future research directions. The various approaches are categorized according to appearance-based, spatio-temporal, and graph-based representations for cognitive vision. While the representation of objects has been covered extensively in computer vision research, both from a reconstruction as well as from a recognition point of view, cognitive vision will also require new ideas how to represent scenes. We introduce new concepts for scene representations and discuss how these might be efficiently implemented in future cognitive vision systems

    A Hierarchical Probabilistic Model for Rapid Object Categorization in Natural Scenes

    Get PDF
    Humans can categorize objects in complex natural scenes within 100–150 ms. This amazing ability of rapid categorization has motivated many computational models. Most of these models require extensive training to obtain a decision boundary in a very high dimensional (e.g., ∼6,000 in a leading model) feature space and often categorize objects in natural scenes by categorizing the context that co-occurs with objects when objects do not occupy large portions of the scenes. It is thus unclear how humans achieve rapid scene categorization

    Question Type Guided Attention in Visual Question Answering

    Get PDF
    Visual Question Answering (VQA) requires integration of feature maps with drastically different structures and focus of the correct regions. Image descriptors have structures at multiple spatial scales, while lexical inputs inherently follow a temporal sequence and naturally cluster into semantically different question types. A lot of previous works use complex models to extract feature representations but neglect to use high-level information summary such as question types in learning. In this work, we propose Question Type-guided Attention (QTA). It utilizes the information of question type to dynamically balance between bottom-up and top-down visual features, respectively extracted from ResNet and Faster R-CNN networks. We experiment with multiple VQA architectures with extensive input ablation studies over the TDIUC dataset and show that QTA systematically improves the performance by more than 5% across multiple question type categories such as "Activity Recognition", "Utility" and "Counting" on TDIUC dataset. By adding QTA on the state-of-art model MCB, we achieve 3% improvement for overall accuracy. Finally, we propose a multi-task extension to predict question types which generalizes QTA to applications that lack of question type, with minimal performance loss
    corecore