1,140 research outputs found

    Special issue on smart interactions in cyber-physical systems: Humans, agents, robots, machines, and sensors

    Get PDF
    In recent years, there has been increasing interaction between humans and non‐human systems as we move further beyond the industrial age, the information age, and as we move into the fourth‐generation society. The ability to distinguish between human and non‐human capabilities has become more difficult to discern. Given this, it is common that cyber‐physical systems (CPSs) are rapidly integrated with human functionality, and humans have become increasingly dependent on CPSs to perform their daily routines.The constant indicators of a future where human and non‐human CPSs relationships consistently interact and where they allow each other to navigate through a set of non‐trivial goals is an interesting and rich area of research, discovery, and practical work area. The evidence of con- vergence has rapidly gained clarity, demonstrating that we can use complex combinations of sensors, artificial intelli- gence, and data to augment human life and knowledge. To expand the knowledge in this area, we should explain how to model, design, validate, implement, and experiment with these complex systems of interaction, communication, and networking, which will be developed and explored in this special issue. This special issue will include ideas of the future that are relevant for understanding, discerning, and developing the relationship between humans and non‐ human CPSs as well as the practical nature of systems that facilitate the integration between humans, agents, robots, machines, and sensors (HARMS).Fil: Kim, Donghan. Kyung Hee University;Fil: Rodriguez, Sebastian Alberto. Universidad Tecnológica Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Matson, Eric T.. Purdue University; Estados UnidosFil: Kim, Gerard Jounghyun. Korea University

    Design and modeling of a stair climber smart mobile robot (MSRox)

    Full text link

    Development of personal area network (PAN) for mobile robot using bluetooth transceiver

    Get PDF
    The work presents the concept of providing a Personal Area Network (PAN) for microcontroller based mobile robots using Bluetooth transceiver. With the concept of replacing cable, low cost, low power consumption and communication range between 10m to 100m, Bluetooth is suitable for communication between mobile robots since most mobile robots are powered by batteries and have high mobility. The network aimed to support real-time control of up to two mobile robots from a master mobile robot through communication using Bluetooth transceiver. If a fast network radio link is implemented, a whole new world of possibilities is opened in the research of robotics control and Artificial Intelligence (AI) research works, sending real time image and information. Robots could communicate through obstacles or even through walls. Bluetooth Ad Hoc topology provides a simple communication between devices in close by forming PAN. A system contained of both hardware and software is designed to enable the robots to form a PAN and communicating, sharing information. Three microcontroller based mobile robots are built for this research work. Bluetooth Protocol Stack and mobile robot control architecture is implemented on a single microcontroller chip. The PAN enabled a few mobile robots to communicate with each other to complete a given task. The wireless communication between mobile robots is reliable based from the result of experiments carried out. Thus this is a platform for multi mobile robots system and Ad Hoc networking system. Results from experiments show that microcontroller based mobile robots can easily form a Bluetooth PAN and communicate with each other

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper
    corecore