43,494 research outputs found

    Study on Segmentation and Global Motion Estimation in Object Tracking Based on Compressed Domain

    Get PDF
    Object tracking is an interesting and needed procedure for many real time applications. But it is a challenging one, because of the presence of challenging sequences with abrupt motion occlusion, cluttered background and also the camera shake. In many video processing systems, the presence of moving objects limits the accuracy of Global Motion Estimation (GME). On the other hand, the inaccuracy of global motion parameter estimates affects the performance of motion segmentation. In the proposed method, we introduce a procedure for simultaneous object segmentation and GME from block-based motion vector (MV) field, motion vector is refined firstly by spatial and temporal correlation of motion and initial segmentation is produced by using the motion vector difference after global motion estimation

    Color-based 3D particle filtering for robust tracking in heterogeneous environments

    Full text link
    Most multi-camera 3D tracking and positioning systems rely on several independent 2D tracking modules applied over individual camera streams, fused using both geometrical relationships across cameras and/or observed appearance of objects. However, 2D tracking systems suffer inherent difficulties due to point of view limitations (perceptually similar foreground and background regions causing fragmentation of moving objects, occlusions, etc.) and, therefore, 3D tracking based on partially erroneous 2D tracks are likely to fail when handling multiple-people interaction. In this paper, we propose a Bayesian framework for combining 2D low-level cues from multiple cameras directly into the 3D world through 3D Particle Filters. This novel method (direct 3D operation) allows the estimation of the probability of a certain volume being occupied by a moving object, using 2D motion detection and color features as state observations of the Particle Filter framework. For this purpose, an efficient color descriptor has been implemented, which automatically adapts itself to image noise, proving able to deal with changes in illumination and shape variations. The ability of the proposed framework to correctly track multiple 3D objects over time is tested on a real indoor scenario, showing satisfactory results

    Computational Modeling of Human Dorsal Pathway for Motion Processing

    Get PDF
    Reliable motion estimation in videos is of crucial importance for background iden- tification, object tracking, action recognition, event analysis, self-navigation, etc. Re- constructing the motion field in the 2D image plane is very challenging, due to variations in image quality, scene geometry, lighting condition, and most importantly, camera jit- tering. Traditional optical flow models assume consistent image brightness and smooth motion field, which are violated by unstable illumination and motion discontinuities that are common in real world videos. To recognize observer (or camera) motion robustly in complex, realistic scenarios, we propose a biologically-inspired motion estimation system to overcome issues posed by real world videos. The bottom-up model is inspired from the infrastructure as well as functionalities of human dorsal pathway, and the hierarchical processing stream can be divided into three stages: 1) spatio-temporal processing for local motion, 2) recogni- tion for global motion patterns (camera motion), and 3) preemptive estimation of object motion. To extract effective and meaningful motion features, we apply a series of steer- able, spatio-temporal filters to detect local motion at different speeds and directions, in a way that\u27s selective of motion velocity. The intermediate response maps are cal- ibrated and combined to estimate dense motion fields in local regions, and then, local motions along two orthogonal axes are aggregated for recognizing planar, radial and circular patterns of global motion. We evaluate the model with an extensive, realistic video database that collected by hand with a mobile device (iPad) and the video content varies in scene geometry, lighting condition, view perspective and depth. We achieved high quality result and demonstrated that this bottom-up model is capable of extracting high-level semantic knowledge regarding self motion in realistic scenes. Once the global motion is known, we segment objects from moving backgrounds by compensating for camera motion. For videos captured with non-stationary cam- eras, we consider global motion as a combination of camera motion (background) and object motion (foreground). To estimate foreground motion, we exploit corollary dis- charge mechanism of biological systems and estimate motion preemptively. Since back- ground motions for each pixel are collectively introduced by camera movements, we apply spatial-temporal averaging to estimate the background motion at pixel level, and the initial estimation of foreground motion is derived by comparing global motion and background motion at multiple spatial levels. The real frame signals are compared with those derived by forward predictions, refining estimations for object motion. This mo- tion detection system is applied to detect objects with cluttered, moving backgrounds and is proved to be efficient in locating independently moving, non-rigid regions. The core contribution of this thesis is the invention of a robust motion estimation system for complicated real world videos, with challenges by real sensor noise, complex natural scenes, variations in illumination and depth, and motion discontinuities. The overall system demonstrates biological plausibility and holds great potential for other applications, such as camera motion removal, heading estimation, obstacle avoidance, route planning, and vision-based navigational assistance, etc

    3D VISUAL TRACKING USING A SINGLE CAMERA

    Get PDF
    automated surveillance and motion based recognition. 3D tracking address the localization of moving target is the 3D space. Therefore, 3D tracking requires 3D measurement of the moving object which cannot be obtained from 2D cameras. Existing 3D tracking systems use multiple cameras for computing the depth of field and it is only used in research laboratories. Millions of surveillance cameras are installed worldwide and all of them capture 2D images. Therefore, 3D tracking cannot be performed with these cameras unless multiple cameras are installed at each location in order to compute the depth. This means installing millions of new cameras which is not a feasible solution. This work introduces a novel depth estimation method from a single 2D image using triangulation. This method computes the absolute depth of field for any object in the scene with high accuracy and short computational time. The developed method is used for performing 3D visual tracking using a single camera by providing the depth of field and ground coordinates of the moving object for each frame accurately and efficiently. Therefore, this technique can help in transforming existing 2D tracking and 2D video analytics into 3D without incurring additional costs. This makes video surveillance more efficient and increases its usage in human life. The proposed methodology uses background subtraction process for detecting a moving object in the image. Then, the newly developed depth estimation method is used for computing the 3D measurement of the moving target. Finally, the unscented Kalman filter is used for tracking the moving object given the 3D measurement obtained by the triangulation method. This system has been test and validated using several video sequences and it shows good performance in term of accuracy and computational complexity

    Detecting moving objects in video frames

    Get PDF
    Object detection and tracking are challenging critical works in many machine vision applications like traffic control, video surveillance, and person tracking.For detecting moving objects in a video, we use object detection algorithms which compares a static background frame at the pixel level with the current frame. In this thesis, we use the combination of kernel density estimation and modified running average method for efficient motion detection. In this method we use single fixed camera with static background for video. Further we use edge detection algorithm together with morphological operation to improve object detection technique and then combine the output of KDE and MRA method. By using adaptive value in modified running average method for detecting the object, output is less affected by motion

    Independent Motion Detection with Event-driven Cameras

    Full text link
    Unlike standard cameras that send intensity images at a constant frame rate, event-driven cameras asynchronously report pixel-level brightness changes, offering low latency and high temporal resolution (both in the order of micro-seconds). As such, they have great potential for fast and low power vision algorithms for robots. Visual tracking, for example, is easily achieved even for very fast stimuli, as only moving objects cause brightness changes. However, cameras mounted on a moving robot are typically non-stationary and the same tracking problem becomes confounded by background clutter events due to the robot ego-motion. In this paper, we propose a method for segmenting the motion of an independently moving object for event-driven cameras. Our method detects and tracks corners in the event stream and learns the statistics of their motion as a function of the robot's joint velocities when no independently moving objects are present. During robot operation, independently moving objects are identified by discrepancies between the predicted corner velocities from ego-motion and the measured corner velocities. We validate the algorithm on data collected from the neuromorphic iCub robot. We achieve a precision of ~ 90 % and show that the method is robust to changes in speed of both the head and the target.Comment: 7 pages, 6 figure

    The World of Fast Moving Objects

    Full text link
    The notion of a Fast Moving Object (FMO), i.e. an object that moves over a distance exceeding its size within the exposure time, is introduced. FMOs may, and typically do, rotate with high angular speed. FMOs are very common in sports videos, but are not rare elsewhere. In a single frame, such objects are often barely visible and appear as semi-transparent streaks. A method for the detection and tracking of FMOs is proposed. The method consists of three distinct algorithms, which form an efficient localization pipeline that operates successfully in a broad range of conditions. We show that it is possible to recover the appearance of the object and its axis of rotation, despite its blurred appearance. The proposed method is evaluated on a new annotated dataset. The results show that existing trackers are inadequate for the problem of FMO localization and a new approach is required. Two applications of localization, temporal super-resolution and highlighting, are presented
    corecore