393 research outputs found

    A multi-camera approach to image-based rendering and 3-D/Multiview display of ancient chinese artifacts

    Get PDF
    published_or_final_versio

    Pixel-level Image Fusion Algorithms for Multi-camera Imaging System

    Get PDF
    This thesis work is motivated by the potential and promise of image fusion technologies in the multi sensor image fusion system and applications. With specific focus on pixel level image fusion, the process after the image registration is processed, we develop graphic user interface for multi-sensor image fusion software using Microsoft visual studio and Microsoft Foundation Class library. In this thesis, we proposed and presented some image fusion algorithms with low computational cost, based upon spatial mixture analysis. The segment weighted average image fusion combines several low spatial resolution data source from different sensors to create high resolution and large size of fused image. This research includes developing a segment-based step, based upon stepwise divide and combine process. In the second stage of the process, the linear interpolation optimization is used to sharpen the image resolution. Implementation of these image fusion algorithms are completed based on the graphic user interface we developed. Multiple sensor image fusion is easily accommodated by the algorithm, and the results are demonstrated at multiple scales. By using quantitative estimation such as mutual information, we obtain the experiment quantifiable results. We also use the image morphing technique to generate fused image sequence, to simulate the results of image fusion. While deploying our pixel level image fusion algorithm approaches, we observe several challenges from the popular image fusion methods. While high computational cost and complex processing steps of image fusion algorithms provide accurate fused results, they also makes it hard to become deployed in system and applications that require real-time feedback, high flexibility and low computation abilit

    Land-Use Mapping in a Mixed Urban-Agricultural Arid Landscape Using Object-Based Image Analysis: A Case Study from Maricopa, Arizona

    Get PDF
    Land-use mapping is critical for global change research. In Central Arizona, U.S.A., the spatial distribution of land use is important for sustainable land management decisions. The objective of this study was to create a land-use map that serves as a model for the city of Maricopa, an expanding urban region in the Sun Corridor of Arizona. We use object-based image analysis to map six land-use types from ASTER imagery, and then compare this with two per-pixel classifications. Our results show that a single segmentation, combined with intermediary classifications and merging, morphing, and growing image-objects, can lead to an accurate land-use map that is capable of utilizing both spatial and spectral information. We also employ a moving-window diversity assessment to help with analysis and improve post-classification modifications

    Light field appearance manifolds

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (leaves 137-141).Statistical shape and texture appearance models are powerful image representations, but previously had been restricted to 2D or 3D shapes with smooth surfaces and lambertian reflectance. In this thesis we present a novel 4D appearance model using image-based rendering techniques, which can represent complex lighting conditions, structures, and surfaces. We construct a light field manifold capturing the multi-view appearance of an object class and extend previous direct search algorithms to match new light fields or 2D images of an object to a point on this manifold. When matching to a 2D image the reconstructed light field can be used to render unseen views of the object. Our technique differs from previous view-based active appearance models in that model coefficients between views are explicitly linked, and that we do not model any pose variation within the deformable model at a single view. It overcomes the limitations of polygonal based appearance models and uses light fields that are acquired in real-time.by Chris Mario Christoudias.S.M

    Computational Light Routing: 3D Printed Optical Fibers for Sensing and Display

    Get PDF
    Despite recent interest in digital fabrication, there are still few algorithms that provide control over how light propagates inside a solid object. Existing methods either work only on the surface or restrict themselves to light diffusion in volumes. We use multi-material 3D printing to fabricate objects with embedded optical fibers, exploiting total internal reflection to guide light inside an object. We introduce automatic fiber design algorithms together with new manufacturing techniques to route light between two arbitrary surfaces. Our implicit algorithm optimizes light transmission by minimizing fiber curvature and maximizing fiber separation while respecting constraints such as fiber arrival angle. We also discuss the influence of different printable materials and fiber geometry on light propagation in the volume and the light angular distribution when exiting the fiber. Our methods enable new applications such as surface displays of arbitrary shape, touch-based painting of surfaces, and sensing a hemispherical light distribution in a single shot.National Science Foundation (U.S.) (Grant CCF-1012147)National Science Foundation (U.S.) (Grant IIS-1116296)United States. Defense Advanced Research Projects Agency (Grant N66001-12-1-4242)Intel Corporation (Science and Technology Center for Visual Computing)Alfred P. Sloan Foundation (Sloan Research Fellowship

    The Individual is Nothing, the Class Everything: Psychophysics and Modeling of Recognition in Obect Classes

    Get PDF
    Most psychophysical studies of object recognition have focussed on the recognition and representation of individual objects subjects had previously explicitely been trained on. Correspondingly, modeling studies have often employed a 'grandmother'-type representation where the objects to be recognized were represented by individual units. However, objects in the natural world are commonly members of a class containing a number of visually similar objects, such as faces, for which physiology studies have provided support for a representation based on a sparse population code, which permits generalization from the learned exemplars to novel objects of that class. In this paper, we present results from psychophysical and modeling studies intended to investigate object recognition in natural ('continuous') object classes. In two experiments, subjects were trained to perform subordinate level discrimination in a continuous object class - images of computer-rendered cars - created using a 3D morphing system. By comparing the recognition performance of trained and untrained subjects we could estimate the effects of viewpoint-specific training and infer properties of the object class-specific representation learned as a result of training. We then compared the experimental findings to simulations, building on our recently presented HMAX model of object recognition in cortex, to investigate the computational properties of a population-based object class representation as outlined above. We find experimental evidence, supported by modeling results, that training builds a viewpoint- and class-specific representation that supplements a pre-existing repre-sentation with lower shape discriminability but possibly greater viewpoint invariance

    2D and 3D surface image processing algorithms and their applications

    Get PDF
    This doctoral dissertation work aims to develop algorithms for 2D image segmentation application of solar filament disappearance detection, 3D mesh simplification, and 3D image warping in pre-surgery simulation. Filament area detection in solar images is an image segmentation problem. A thresholding and region growing combined method is proposed and applied in this application. Based on the filament area detection results, filament disappearances are reported in real time. The solar images in 1999 are processed with this proposed system and three statistical results of filaments are presented. 3D images can be obtained by passive and active range sensing. An image registration process finds the transformation between each pair of range views. To model an object, a common reference frame in which all views can be transformed must be defined. After the registration, the range views should be integrated into a non-redundant model. Optimization is necessary to obtain a complete 3D model. One single surface representation can better fit to the data. It may be further simplified for rendering, storing and transmitting efficiently, or the representation can be converted to some other formats. This work proposes an efficient algorithm for solving the mesh simplification problem, approximating an arbitrary mesh by a simplified mesh. The algorithm uses Root Mean Square distance error metric to decide the facet curvature. Two vertices of one edge and the surrounding vertices decide the average plane. The simplification results are excellent and the computation speed is fast. The algorithm is compared with six other major simplification algorithms. Image morphing is used for all methods that gradually and continuously deform a source image into a target image, while producing the in-between models. Image warping is a continuous deformation of a: graphical object. A morphing process is usually composed of warping and interpolation. This work develops a direct-manipulation-of-free-form-deformation-based method and application for pre-surgical planning. The developed user interface provides a friendly interactive tool in the plastic surgery. Nose augmentation surgery is presented as an example. Displacement vector and lattices resulting in different resolution are used to obtain various deformation results. During the deformation, the volume change of the model is also considered based on a simplified skin-muscle model

    3D face structure extraction from images at arbitrary poses and under arbitrary illumination conditions

    Get PDF
    With the advent of 9/11, face detection and recognition is becoming an important tool to be used for securing homeland safety against potential terrorist attacks by tracking and identifying suspects who might be trying to indulge in such activities. It is also a technology that has proven its usefulness for law enforcement agencies by helping identifying or narrowing down a possible suspect from surveillance tape on the crime scene, or quickly by finding a suspect based on description from witnesses.In this thesis we introduce several improvements to morphable model based algorithms and make use of the 3D face structures extracted from multiple images to conduct illumination analysis and face recognition experiments. We present an enhanced Active Appearance Model (AAM), which possesses several sub-models that are independently updated to introduce more model flexibility to achieve better feature localization. Most appearance based models suffer from the unpredictability of facial background, which might result in a bad boundary extraction. To overcome this problem we propose a local projection models that accurately locates face boundary landmarks. We also introduce a novel and unbiased cost function that casts the face alignment as an optimization problem, where shape constraints obtained from direct motion estimation are incorporated to achieve a much higher convergence rate and more accurate alignment. Viewing angles are roughly categorized to four different poses, and the customized view-based AAMs align face images in different specific pose categories. We also attempt at obtaining individual 3D face structures by morphing a 3D generic face model to fit the individual faces. Face contour is dynamically generated so that the morphed face looks realistic. To overcome the correspondence problem between facial feature points on the generic and the individual face, we use an approach based on distance maps. With the extracted 3D face structure we study the illumination effects on the appearance based on the spherical harmonic illumination analysis. By normalizing the illumination conditions on different facial images, we extract a global illumination-invariant texture map, which jointly with the extracted 3D face structure in the form of cubic morphing parameters completely encode an individual face, and allow for the generation of images at arbitrary pose and under arbitrary illumination.Face recognition is conducted based on the face shape matching error, texture error and illumination-normalized texture error. Experiments show that a higher face recognition rate is achieved by compensating for illumination effects. Furthermore, it is observed that the fusion of shape and texture information result in a better performance than using either shape or texture information individually.Ph.D., Electrical Engineering -- Drexel University, 200

    コンピュータビジョン・グラフィックスのための影の消去と補間

    Get PDF
    University of Tokyo (東京大学

    Analysis of 3D Face Reconstruction

    No full text
    This thesis investigates the long standing problem of 3D reconstruction from a single 2D face image. Face reconstruction from a single 2D face image is an ill posed problem involving estimation of the intrinsic and the extrinsic camera parameters, light parameters, shape parameters and the texture parameters. The proposed approach has many potential applications in the law enforcement, surveillance, medicine, computer games and the entertainment industries. This problem is addressed using an analysis by synthesis framework by reconstructing a 3D face model from identity photographs. The identity photographs are a widely used medium for face identi cation and can be found on identity cards and passports. The novel contribution of this thesis is a new technique for creating 3D face models from a single 2D face image. The proposed method uses the improved dense 3D correspondence obtained using rigid and non-rigid registration techniques. The existing reconstruction methods use the optical ow method for establishing 3D correspondence. The resulting 3D face database is used to create a statistical shape model. The existing reconstruction algorithms recover shape by optimizing over all the parameters simultaneously. The proposed algorithm simplifies the reconstruction problem by using a step wise approach thus reducing the dimension of the parameter space and simplifying the opti- mization problem. In the alignment step, a generic 3D face is aligned with the given 2D face image by using anatomical landmarks. The texture is then warped onto the 3D model by using the spatial alignment obtained previously. The 3D shape is then recovered by optimizing over the shape parameters while matching a texture mapped model to the target image. There are a number of advantages of this approach. Firstly, it simpli es the optimization requirements and makes the optimization more robust. Second, there is no need to accurately recover the illumination parameters. Thirdly, there is no need for recovering the texture parameters by using a texture synthesis approach. Fourthly, quantitative analysis is used for improving the quality of reconstruction by improving the cost function. Previous methods use qualitative methods such as visual analysis, and face recognition rates for evaluating reconstruction accuracy. The improvement in the performance of the cost function occurs as a result of improvement in the feature space comprising the landmark and intensity features. Previously, the feature space has not been evaluated with respect to reconstruction accuracy thus leading to inaccurate assumptions about its behaviour. The proposed approach simpli es the reconstruction problem by using only identity images, rather than placing eff ort on overcoming the pose, illumination and expression (PIE) variations. This makes sense, as frontal face images under standard illumination conditions are widely available and could be utilized for accurate reconstruction. The reconstructed 3D models with texture can then be used for overcoming the PIE variations
    corecore