250 research outputs found

    Video Captioning with Aggregated Features Based on Dual Graphs and Gated Fusion

    Full text link
    The application of video captioning models aims at translating the content of videos by using accurate natural language. Due to the complex nature inbetween object interaction in the video, the comprehensive understanding of spatio-temporal relations of objects remains a challenging task. Existing methods often fail in generating sufficient feature representations of video content. In this paper, we propose a video captioning model based on dual graphs and gated fusion: we adapt two types of graphs to generate feature representations of video content and utilize gated fusion to further understand these different levels of information. Using a dual-graphs model to generate appearance features and motion features respectively can utilize the content correlation in frames to generate various features from multiple perspectives. Among them, dual-graphs reasoning can enhance the content correlation in frame sequences to generate advanced semantic features; The gated fusion, on the other hand, aggregates the information in multiple feature representations for comprehensive video content understanding. The experiments conducted on worldly used datasets MSVD and MSR-VTT demonstrate state-of-the-art performance of our proposed approach

    Accurate and Fast Compressed Video Captioning

    Full text link
    Existing video captioning approaches typically require to first sample video frames from a decoded video and then conduct a subsequent process (e.g., feature extraction and/or captioning model learning). In this pipeline, manual frame sampling may ignore key information in videos and thus degrade performance. Additionally, redundant information in the sampled frames may result in low efficiency in the inference of video captioning. Addressing this, we study video captioning from a different perspective in compressed domain, which brings multi-fold advantages over the existing pipeline: 1) Compared to raw images from the decoded video, the compressed video, consisting of I-frames, motion vectors and residuals, is highly distinguishable, which allows us to leverage the entire video for learning without manual sampling through a specialized model design; 2) The captioning model is more efficient in inference as smaller and less redundant information is processed. We propose a simple yet effective end-to-end transformer in the compressed domain for video captioning that enables learning from the compressed video for captioning. We show that even with a simple design, our method can achieve state-of-the-art performance on different benchmarks while running almost 2x faster than existing approaches. Code is available at https://github.com/acherstyx/CoCap

    EMScore: Evaluating Video Captioning via Coarse-Grained and Fine-Grained Embedding Matching

    Full text link
    Current metrics for video captioning are mostly based on the text-level comparison between reference and candidate captions. However, they have some insuperable drawbacks, e.g., they cannot handle videos without references, and they may result in biased evaluation due to the one-to-many nature of video-to-text and the neglect of visual relevance. From the human evaluator's viewpoint, a high-quality caption should be consistent with the provided video, but not necessarily be similar to the reference in literal or semantics. Inspired by human evaluation, we propose EMScore (Embedding Matching-based score), a novel reference-free metric for video captioning, which directly measures similarity between video and candidate captions. Benefit from the recent development of large-scale pre-training models, we exploit a well pre-trained vision-language model to extract visual and linguistic embeddings for computing EMScore. Specifically, EMScore combines matching scores of both coarse-grained (video and caption) and fine-grained (frames and words) levels, which takes the overall understanding and detailed characteristics of the video into account. Furthermore, considering the potential information gain, EMScore can be flexibly extended to the conditions where human-labeled references are available. Last but not least, we collect VATEX-EVAL and ActivityNet-FOIl datasets to systematically evaluate the existing metrics. VATEX-EVAL experiments demonstrate that EMScore has higher human correlation and lower reference dependency. ActivityNet-FOIL experiment verifies that EMScore can effectively identify "hallucinating" captions. The datasets will be released to facilitate the development of video captioning metrics. The code is available at: https://github.com/ShiYaya/emscore.Comment: cvpr202

    Text with Knowledge Graph Augmented Transformer for Video Captioning

    Full text link
    Video captioning aims to describe the content of videos using natural language. Although significant progress has been made, there is still much room to improve the performance for real-world applications, mainly due to the long-tail words challenge. In this paper, we propose a text with knowledge graph augmented transformer (TextKG) for video captioning. Notably, TextKG is a two-stream transformer, formed by the external stream and internal stream. The external stream is designed to absorb additional knowledge, which models the interactions between the additional knowledge, e.g., pre-built knowledge graph, and the built-in information of videos, e.g., the salient object regions, speech transcripts, and video captions, to mitigate the long-tail words challenge. Meanwhile, the internal stream is designed to exploit the multi-modality information in videos (e.g., the appearance of video frames, speech transcripts, and video captions) to ensure the quality of caption results. In addition, the cross attention mechanism is also used in between the two streams for sharing information. In this way, the two streams can help each other for more accurate results. Extensive experiments conducted on four challenging video captioning datasets, i.e., YouCookII, ActivityNet Captions, MSRVTT, and MSVD, demonstrate that the proposed method performs favorably against the state-of-the-art methods. Specifically, the proposed TextKG method outperforms the best published results by improving 18.7% absolute CIDEr scores on the YouCookII dataset.Comment: Accepted by CVPR202
    • …
    corecore