261 research outputs found

    Multi-Modal 3D Object Detection in Autonomous Driving: a Survey

    Full text link
    In the past few years, we have witnessed rapid development of autonomous driving. However, achieving full autonomy remains a daunting task due to the complex and dynamic driving environment. As a result, self-driving cars are equipped with a suite of sensors to conduct robust and accurate environment perception. As the number and type of sensors keep increasing, combining them for better perception is becoming a natural trend. So far, there has been no indepth review that focuses on multi-sensor fusion based perception. To bridge this gap and motivate future research, this survey devotes to review recent fusion-based 3D detection deep learning models that leverage multiple sensor data sources, especially cameras and LiDARs. In this survey, we first introduce the background of popular sensors for autonomous cars, including their common data representations as well as object detection networks developed for each type of sensor data. Next, we discuss some popular datasets for multi-modal 3D object detection, with a special focus on the sensor data included in each dataset. Then we present in-depth reviews of recent multi-modal 3D detection networks by considering the following three aspects of the fusion: fusion location, fusion data representation, and fusion granularity. After a detailed review, we discuss open challenges and point out possible solutions. We hope that our detailed review can help researchers to embark investigations in the area of multi-modal 3D object detection

    Radars for Autonomous Driving: A Review of Deep Learning Methods and Challenges

    Full text link
    Radar is a key component of the suite of perception sensors used for safe and reliable navigation of autonomous vehicles. Its unique capabilities include high-resolution velocity imaging, detection of agents in occlusion and over long ranges, and robust performance in adverse weather conditions. However, the usage of radar data presents some challenges: it is characterized by low resolution, sparsity, clutter, high uncertainty, and lack of good datasets. These challenges have limited radar deep learning research. As a result, current radar models are often influenced by lidar and vision models, which are focused on optical features that are relatively weak in radar data, thus resulting in under-utilization of radar's capabilities and diminishing its contribution to autonomous perception. This review seeks to encourage further deep learning research on autonomous radar data by 1) identifying key research themes, and 2) offering a comprehensive overview of current opportunities and challenges in the field. Topics covered include early and late fusion, occupancy flow estimation, uncertainty modeling, and multipath detection. The paper also discusses radar fundamentals and data representation, presents a curated list of recent radar datasets, and reviews state-of-the-art lidar and vision models relevant for radar research. For a summary of the paper and more results, visit the website: autonomous-radars.github.io

    “Deep sensor fusion architecture for point-cloud semantic segmentation”

    Get PDF
    Este trabajo de grado desarrolla un completo abordaje del analisis de datos y su procesamiento para obtener una mejor toma de decisiones, presentando así una arquitectura neuronal multimodal basada CNN, comprende explicaciones precisas de los sistemas que integra y realiza una evaluacion del comportamiento en el entorno.Los sistemas de conducción autónoma integran procedimientos realmente complejos, para los cuales la percepción del entorno del vehículo es una fuente de información clave para tomar decisiones durante maniobras en tiempo real. La segmentación semántica de los datos obtenidos de los sensores LiDAR ha desempeñado un papel importante en la consolidación de una representación densa de los objetos y eventos circundantes. Aunque se han hecho grandes avances para resolver esta tarea, creemos que hay una infrautilización de estrategias que aprovechas la fusión de sensores. Presentamos una arquitectura neuronal multimodal, basada en CNNs que es alimentada por las señales de entrada 2D del LiDAR y de la cámara, computa una representación profunda de ambos sensores, y predice un mapeo de etiquetas para el problema de segmentación de puntos en 3D. Evaluamos la arquitectura propuesta en un conjunto de datos derivados del popular dataset KITTI, que contempla clases semánticas comunes ( coche, peatón y ciclista). Nuestro modelo supera a los métodos existentes y muestra una mejora en el refinamiento de las máscaras de segmentación.Self-driving systems are composed by really complex pipelines in which perceiving the vehicle surroundings is a key source of information used to take real-time maneuver decisions. Semantic segmentation on LiDAR sensor data has played a big role in the consolidation of a dense understanding of the surrounding objects and events. Although great advances have been made for this task, we believe there is an under-exploitation of sensor fusion strategies. We present a multimodal neural architecture, based on CNNs that consumes 2D input signals from LiDAR and camera, computes a deep representation leveraging straightness from both sensors, and predicts a label mapping for the 3D point-wise segmentation problem. We evaluated the proposed architecture in a derived dataset from the KITTI vision benchmark suite which contemplates common semantic classes(i.e. car, pedestrian and cyclist). Our model outperforms existing methods and shows improvement in the segmentation masks refinement.MaestríaMagíster en Ingeniería de Sistemas y ComputaciónTable of Contents Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Autonomous vehicle perception systems . . . . . . . . . . . . . . . . . . . . 6 2.1 Semantic segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Autonomous vehicles sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.4 Ultrasonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Point clouds semantic segmentation . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Raw pointcloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 Voxelization of pointclouds . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.3 Point cloud projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 Deep multimodal learning for semantic segmentation . . . . . . . . . . . . . 19 3.1 Method overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Point cloud transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Multimodal fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 RGB modality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.2 LiDAR modality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.3 Fusion step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.4 Decoding part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.5 Optimization statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.1 KITTI dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 Evaluation metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    Object detection from a few LIDAR scanning planes

    Get PDF

    LiDAR Object Detection Utilizing Existing CNNs for Smart Cities

    Get PDF
    As governments and private companies alike race to achieve the vision of a smart city — where artificial intelligence (AI) technology is used to enable self-driving cars, cashier-less shopping experiences and connected home devices from thermostats to robot vacuum cleaners — advancements are being made in both software and hardware to enable increasingly real-time, accurate inference at the edge. One hardware solution adopted for this purpose is the LiDAR sensor, which utilizes infrared lasers to accurately detect and map its surroundings in 3D. On the software side, developers have turned to artificial neural networks to make predictions and recommendations with high accuracy. These neural networks have the potential, particularly run on purpose-built hardware such as GPUs and TPUs, to make inferences in near real-time, allowing the AI models to serve as a usable interface for real-world interactions with other AI-powered devices, or with human users. This paper aims to example the joint use of LiDAR sensors and AI to understand its importance in smart city environments

    Inimeste tuvastamine ning kauguse hindamine kasutades kaamerat ning YOLOv3 tehisnärvivõrku

    Get PDF
    Inimestega vähemalt samal tasemel keskkonnast aru saamine masinate poolt oleks kasulik paljudes domeenides. Mitmed erinevad sensored aitavad selle ülesande juures, enim on kasutatud kaameraid. Objektide tuvastamine on tähtis osa keskkonnast aru saamisel. Selle täpsus on viimasel ajal palju paranenud tänu arenenud masinõppe meetoditele nimega konvolutsioonilised närvivõrgud (CNN), mida treenitakse kasutades märgendatud kaamerapilte. Monokulaarkaamerapilt sisaldab 2D infot, kuid ei sisalda sügavusinfot. Teisalt, sügavusinfo on tähtis näiteks isesõitvate autode domeenis. Inimeste ohutus tuleb tagada näiteks töötades autonoomsete masinate läheduses või kui jalakäija ületab teed autonoomse sõiduki eest. Antud töös uuritakse võimalust, kuidas tuvastada inimesi ning hinnata nende kaugusi samaaegselt, kasutades RGB kaamerat, eesmärgiga kasutada seda autonoomseks sõitmiseks maastikul. Selleks täiustatakse hetkel parimat objektide tuvastamise konvolutsioonilist närvivõrku YOLOv3 (ingl k. You Only Look Once). Selle töö väliselt on simulatsioonitarkvaradega AirSim ning Unreal Engine loodud lumine metsamaastik koos inimestega erinevates kehapoosides. YOLOv3 närvivõrgu treenimiseks võeti simulatsioonist välja vajalikud andmed, kasutades skripte. Lisaks muudeti närvivõrku, et lisaks inimese asukohta tuvastavale piirikastile väljastataks ka inimese kauguse ennustus. Antud töö tulemuseks on mudel, mille ruutkesmine viga RMSE (ingl k. Root Mean Square Error) on 2.99m objektidele kuni 50m kaugusel, säilitades samaaegselt originaalse närvivõrgu inimeste tuvastamise täpsuse. Võrreldavate meetodite RMSE veaks leiti 4.26m (teist andmestikku kasutades) ja 4.79m (selles töös kasutatud andmestikul), mis vastavalt kasutavad kahte eraldiseisvat närvivõrku ning LASSO meetodit. See näitab suurt parenemist võrreldes teiste meetoditega. Edasisteks eesmärkideks on meetodi treenimine ning testimine päris maailmast kogutud andmetega, et näha, kas see üldistub ka sellistele keskkondadele.Making machines perceive environment better or at least as well as humans would be beneficial in lots of domains. Different sensors aid in this, most widely used of which is monocular camera. Object detection is a major part of environment perception and its accuracy has greatly improved in the last few years thanks to advanced machine learning methods called convolutional neural networks (CNN) that are trained on many labelled images. Monocular camera image contains two dimensional information, but contains no depth information of the scene. On the other hand, depth information of objects is important in a lot of areas related to autonomous driving, e.g. working next to an automated machine, pedestrian crossing a road in front of an autonomous vehicle, etc. This thesis presents an approach to detect humans and to predict their distance from RGB camera for off-road autonomous driving. This is done by improving YOLO (You Only Look Once) v3[1], a state-of-the-art object detection CNN. Outside of this thesis, an off-road scene depicting a snowy forest with humans in different body poses was simulated using AirSim and Unreal Engine. Data for training YOLOv3 neural network was extracted from there using custom scripts. Also, network was modified to not only predict humans and their bounding boxes, but also their distance from camera. RMSE of 2.99m for objects with distances up to 50m was achieved, while maintaining similar detection accuracy to the original network. Comparable methods using two neural networks and a LASSO model gave 4.26m (in an alternative dataset) and 4.79m (with dataset used is this work) RMSE respectively, showing a huge improvement over the baselines. Future work includes experiments with real-world data to see if the proposed approach generalizes to other environments

    MS3D++: Ensemble of Experts for Multi-Source Unsupervised Domain Adaptation in 3D Object Detection

    Full text link
    Deploying 3D detectors in unfamiliar domains has been demonstrated to result in a significant 70-90% drop in detection rate due to variations in lidar, geography, or weather from their training dataset. This domain gap leads to missing detections for densely observed objects, misaligned confidence scores, and increased high-confidence false positives, rendering the detector highly unreliable. To address this, we introduce MS3D++, a self-training framework for multi-source unsupervised domain adaptation in 3D object detection. MS3D++ generates high-quality pseudo-labels, allowing 3D detectors to achieve high performance on a range of lidar types, regardless of their density. Our approach effectively fuses predictions of an ensemble of multi-frame pre-trained detectors from different source domains to improve domain generalization. We subsequently refine predictions temporally to ensure temporal consistency in box localization and object classification. Furthermore, we present an in-depth study into the performance and idiosyncrasies of various 3D detector components in a cross-domain context, providing valuable insights for improved cross-domain detector ensembling. Experimental results on Waymo, nuScenes and Lyft demonstrate that detectors trained with MS3D++ pseudo-labels achieve state-of-the-art performance, comparable to training with human-annotated labels in Bird's Eye View (BEV) evaluation for both low and high density lidar. Code is available at https://github.com/darrenjkt/MS3

    Design and implementation of a sensor testing system with use of a cable drone

    Get PDF
    Abstract. This thesis aims to develop a testing method for various sensors by modifying a commercial cable cam system to drive with an automated process at constant speed. The goal is to find a way to lift the cables in the air securely without a need for humans to climb on ladders and place them afterwards. This is achieved with a hinged truss tower structure that keeps the cables stabile while the tower is lifted. Another goal was to achieve automated movement of the cable drone. This is done by connecting a tracking camera to a computer that is used to control the cable drone’s motor controller. This will have the drone behave in a certain way depending on the tracking camera’s position data. Third goal is to build a portable sensor system which collects and saves the data from the tested sensors. This goal is achieved with an aluminium profile frame which is equipped with all the necessary equipment, such as a powerful computer. Research included studying different sensors’ performance evaluation criteria and effect of the wind on magnitude of the force in this application. Research was done by studying written sources and consulting a cable camera company called Motion Compound GbR. Results of this master’s thesis are used to evaluate if the idea of using a cable cam is applicable for this kind of sensor testing system. As the conclusion the cable drone with automated driving is evaluated to be a practical method which can still be further developed to meet the requirements even better. Antureiden testausjärjestelmän suunnittelu ja toteuttaminen käyttäen vaijeridronea. Tiivistelmä. Tämän diplomityön tavoitteena on muokata kaupallisesta vaijerikamerajärjestelmästä vakionopeudella liikkuva testausmenetelmä eri antureille. Yhtenä työn tavoitteena on löytää tapa nostaa käytettävät vaijerit ylös turvallisesti siten, ettei niitä tarvitse asentaa jälkikäteen korkealla. Tämä toteutetaan saranoidulla, trusseista rakennetulla tornilla. Tornin huipulle asennetaan laakeroidut akselit sekä suoja, jotka yhdessä pitävät vaijerit paikoillaan myös tornin noston ajan. Toinen tavoite on saavuttaa vaijerilennokin automatisoitu liike. Tämä tapahtuu kytkemällä seurantakamera tietokoneeseen, jota käytetään ohjaamaan myös vaijeridronen moottoriohjainta. Näin vaijeridrone saadaan käyttäytymään halutulla tavalla riippuen seurantakameran sijaintitiedoista. Kolmas tavoite on rakentaa kannettava anturijärjestelmä, jolla kerätään ja tallennetaan testatuilla antureilla kerätty data. Tämä tavoite saavutetaan alumiiniprofiilirungolla, joka varustetaan tarvittavilla laitteilla, kuten esimerkiksi tehokkaalla tietokoneella. Tutkimukseen kuului myös antureiden suorituskyvyn arviointikriteereihin tutustuminen sekä työssä käytettävästä järjestelmästä koituvan voiman suuruuden laskeminen. Tutkimus tehtiin perehtymällä kirjallisuuteen ja konsultoimalla vaijerikamera-alalla toimivaa Motion Compound GbR -yritystä. Tämän diplomityön tuloksia voidaan hyödyntää arvioitaessa, onko vaijerikamerajärjestelmä sovellettavissa mainitun anturien testausjärjestelmän rakentamisessa. Lopputuloksena automatisoidulla ajolla varustetun vaijeridronen arvioidaan olevan tähän tarkoitukseen toimiva menetelmä, jota voidaan edelleen kehittää vastaamaan vaatimuksia vielä paremmin
    corecore