2,363 research outputs found

    Selectivity in Neural Networks

    Get PDF

    A deep evaluator for image retargeting quality by geometrical and contextual interaction

    Get PDF
    An image is compressed or stretched during the multidevice displaying, which will have a very big impact on perception quality. In order to solve this problem, a variety of image retargeting methods have been proposed for the retargeting process. However, how to evaluate the results of different image retargeting is a very critical issue. In various application systems, the subjective evaluation method cannot be applied on a large scale. So we put this problem in the accurate objective-quality evaluation. Currently, most of the image retargeting quality assessment algorithms use simple regression methods as the last step to obtain the evaluation result, which are not corresponding with the perception simulation in the human vision system (HVS). In this paper, a deep quality evaluator for image retargeting based on the segmented stacked AutoEnCoder (SAE) is proposed. Through the help of regularization, the designed deep learning framework can solve the overfitting problem. The main contributions in this framework are to simulate the perception of retargeted images in HVS. Especially, it trains two separated SAE models based on geometrical shape and content matching. Then, the weighting schemes can be used to combine the obtained scores from two models. Experimental results in three well-known databases show that our method can achieve better performance than traditional methods in evaluating different image retargeting results

    Agricultural Robot for Intelligent Detection of Pyralidae Insects

    Get PDF
    The Pyralidae insects are one of the main pests in economic crops. However, the manual detection and identification of Pyralidae insects are labor intensive and inefficient, and subjective factors can influence recognition accuracy. To address these shortcomings, an insect monitoring robot and a new method to recognize the Pyralidae insects are presented in this chapter. Firstly, the robot gets images by performing a fixed action and detects whether there are Pyralidae insects in the images. The recognition method obtains the total probability image by using reverse mapping of histogram and multi-template images, and then image contour can be extracted quickly and accurately by using constraint Otsu. Finally, according to the Hu moment characters, perimeter, and area characters, the contours can be filtrated, and recognition results with triangle mark can be obtained. According to the recognition results, the speed of the robot car and mechanical arm can be adjusted adaptively. The theoretical analysis and experimental results show that the proposed scheme has high timeliness and high recognition accuracy in the natural planting scene
    • …
    corecore