4,590 research outputs found

    The evolution of bits and bottlenecks in a scientific workflow trying to keep up with technology: Accelerating 4D image segmentation applied to nasa data

    Get PDF
    In 2016, a team of earth scientists directly engaged a team of computer scientists to identify cyberinfrastructure (CI) approaches that would speed up an earth science workflow. This paper describes the evolution of that workflow as the two teams bridged CI and an image segmentation algorithm to do large scale earth science research. The Pacific Research Platform (PRP) and The Cognitive Hardware and Software Ecosystem Community Infrastructure (CHASE-CI) resources were used to significantly decreased the earth science workflow's wall-clock time from 19.5 days to 53 minutes. The improvement in wall-clock time comes from the use of network appliances, improved image segmentation, deployment of a containerized workflow, and the increase in CI experience and training for the earth scientists. This paper presents a description of the evolving innovations used to improve the workflow, bottlenecks identified within each workflow version, and improvements made within each version of the workflow, over a three-year time period

    ISCR Annual Report: Fical Year 2004

    Full text link

    AMMP-EXTN: A User Privacy and Collaboration Control Framework for a Multi-User Collaboratory Virtual Reality System

    Get PDF
    In this thesis, we propose a new design of privacy and session control for improving a collaborative molecular modeling CVR system AMMP-VIS [1]. The design mainly addresses the issue of competing user interests and privacy protection coordination. Based on our investigation of AMMP-VIS, we propose a four-level access control structure for collaborative sessions and dynamic action priority specification for manipulations on shared molecular models. Our design allows a single user to participate in multiple simultaneous sessions. Moreover, a messaging system with text chatting and system broadcasting functionality is included. A 2D user interface [2] for easy command invocation is developed in Python. Two other key aspects of system implementation, the collaboration Central deployment and the 2D GUI for control are also discussed. Finally, we describe our system evaluation plan which is based on an improved cognitive walkthrough and heuristic evaluation as well as statistical usage data

    Grappling with movement models: performing arts and slippery contexts

    Get PDF
    The ways we leave, recognise, and interpret marks of human movement are deeply entwined with layerings of collective memory. Although we retroactively order chronological sediments to map shareable stories, our remediations often emerge unpredictably from a multidimensional mnemonic fabric: contemporary ideas can resonate with ancient aspirations and initiatives, and foreign fields of investigation can inform ostensibly unrelated endeavours. Such links reinforce the debunking of grand narratives, and resonate with quests for the new kinds of thinking needed to address the mix of living, technological, and semiotic systems that makes up our wider ecology. As a highly evolving field, movement-and-computing is exceptionally open to, and needy of, this diversity. This paper argues for awareness of the analytical apparatus we sometimes too unwittingly bring to bear on our research objects, and for the value of transdisciplinary and tangential thinking to diversify our research questions. With a view to seeking ways to articulate new, shareable questions rather than propose answers, it looks at wider questions of problem-framing. It emphasises the importance of - quite literally - grounding movement, of recognising its environmental implications and qualities. Informed by work on expressive gesture and creative use of instruments in domains including puppetry and music, this paper also insists on the complexity and heterogeneity of the research strands that are indissociably bound up in our corporeal-technological movement practices

    Scaling Machine Learning Systems using Domain Adaptation

    Get PDF
    Machine-learned components, particularly those trained using deep learning methods, are becoming integral parts of modern intelligent systems, with applications including computer vision, speech processing, natural language processing and human activity recognition. As these machine learning (ML) systems scale to real-world settings, they will encounter scenarios where the distribution of the data in the real-world (i.e., the target domain) is different from the data on which they were trained (i.e., the source domain). This phenomenon, known as domain shift, can significantly degrade the performance of ML systems in new deployment scenarios. In this thesis, we study the impact of domain shift caused by variations in system hardware, software and user preferences on the performance of ML systems. After quantifying the performance degradation of ML models in target domains due to the various types of domain shift, we propose unsupervised domain adaptation (uDA) algorithms that leverage unlabeled data collected in the target domain to improve the performance of the ML model. At its core, this thesis argues for the need to develop uDA solutions while adhering to practical scenarios in which ML systems will scale. More specifically, we consider four scenarios: (i) opaque ML systems, wherein parameters of the source prediction model are not made accessible in the target domain, (ii) transparent ML systems, wherein source model parameters are accessible and can be modified in the target domain, (iii) ML systems where source and target domains do not have identical label spaces, and (iv) distributed ML systems, wherein the source and target domains are geographically distributed, their datasets are private and cannot be exchanged using adaptation. We study the unique challenges and constraints of each scenario and propose novel uDA algorithms that outperform state-of-the-art baselines

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care
    corecore