140 research outputs found

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201

    A semantic data federation engine : design, implementation & applications in educational information management

    Get PDF
    Thesis (S.M. in Technology and Policy)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 87-90).With the advent of the World Wide Web, the amount of digital information in the world has increased exponentially. The ability to organize this deluge of data, retrieve it, and combine it with other data would bring numerous benefits to organizations that rely on the analysis of this data for their operations. The Semantic Web encompasses various technologies that support better information organization and access. This thesis proposes a data federation engine that facilitates integration of data across distributed Semantic Web data sources while maintaining appropriate access policies. After discussing existing literature in the field, the design and implementation of the system including its capabilities and limitations are thoroughly described. Moreover, a possible application of the system at the Massachusetts Department of Education is explored in detail, including an investigation of the technical and nontechnical challenges associated with its adoption at a government agency. By using the federation engine, users would be able to exploit the expressivity of the Semantic Web by querying for disparate data at a single location without having to know how it is distributed or where it is stored. Among this research's contributions to the fledgling Semantic Web are: an integrated system for executing SPARQL queries; and, an optimizer that faciliates efficient querying by exploiting statistical information about the data sources.by Mathew Sam Cherian.S.M.S.M.in Technology and Polic

    Compact semantic representations of observational data

    Get PDF
    Das Konzept des Internet der Dinge (IoT) ist in mehreren Bereichen weit verbreitet, damit Geräte miteinander interagieren und bestimmte Aufgaben erfüllen können. IoT-Geräte umfassen verschiedene Konzepte, z.B. Sensoren, Programme, Computer und Aktoren. IoT-Geräte beobachten ihre Umgebung, um Informationen zu sammeln und miteinander zu kommunizieren, um gemeinsame Aufgaben zu erfüllen. Diese Vorrichtungen erzeugen kontinuierlich Beobachtungsdatenströme, die zu historischen Daten werden, wenn diese Beobachtungen gespeichert werden. Durch die Zunahme der Anzahl der IoT-Geräte wird eine große Menge an Streaming- und historischen Beobachtungsdaten erzeugt. Darüber hinaus wurden mehrere Ontologien, wie die Semantic Sensor Network (SSN) Ontologie, für die semantische Annotation von Beobachtungsdaten vorgeschlagen - entweder Stream oder historisch. Das Resource Description Framework (RDF) ist ein weit verbreitetes Datenmodell zur semantischen Beschreibung der Datensätze. Semantische Annotation bietet ein gemeinsames Verständnis für die Verarbeitung und Analyse von Beobachtungsdaten. Durch das Hinzufügen von Semantik wird die Datengröße jedoch weiter erhöht, insbesondere wenn die Beobachtungswerte von mehreren Geräten redundant erfasst werden. So können beispielsweise mehrere Sensoren Beobachtungen erzeugen, die den gleichen Wert für die relative Luftfeuchtigkeit in einem bestimmten Zeitstempel und einer bestimmten Stadt anzeigen. Diese Situation kann in einem RDF-Diagramm mit vier RDF-Tripel dargestellt werden, wobei Beobachtungen als Tripel dargestellt werden, die das beobachtete Phänomen, die Maßeinheit, den Zeitstempel und die Koordinaten beschreiben. Die RDF-Tripel einer Beobachtung sind mit dem gleichen Thema verbunden. Solche Beobachtungen teilen sich die gleichen Objekte in einer bestimmten Gruppe von Eigenschaften, d.h. sie entsprechen einem Sternmuster, das sich aus diesen Eigenschaften und Objekten zusammensetzt. Wenn die Anzahl dieser Subjektentitäten oder Eigenschaften in diesen Sternmustern groß ist, wird die Größe des RDF-Diagramms und der Abfrageverarbeitung negativ beeinflusst; wir bezeichnen diese Sternmuster als häufige Sternmuster. Diese Arbeit befasst sich mit dem Problem der Identifizierung von häufigen Sternenmustern in RDF-Diagrammen und entwickelt Berechnungsmethoden, um häufige Sternmuster zu identifizieren und ein faktorisiertes RDF-Diagramm zu erzeugen, bei dem die Anzahl der häufigen Sternmuster minimiert wird. Darüber hinaus wenden wir diese faktorisierten RDF-Darstellungen über historische semantische Sensordaten an, die mit der SSN-Ontologie beschrieben werden, und präsentieren tabellarische Darstellungen von faktorisierten semantischen Sensordaten, um Big Data-Frameworks auszunutzen. Darüber hinaus entwickelt diese Arbeit einen wissensbasierten Ansatz namens DESERT, der in der Lage ist, bei Bedarf Streamdaten zu faktorisieren und semantisch anzureichern (on-Demand factorizE and Semantically Enrich stReam daTa). Wir bewerten die Leistung unserer vorgeschlagenen Techniken anhand mehrerer RDF-Diagramm-Benchmarks. Die Ergebnisse zeigen, dass unsere Techniken in der Lage sind, häufige Sternmuster effektiv und effizient zu erkennen, und die Größe der RDF-Diagramme kann um bis zu 66,56% reduziert werden, während die im ursprünglichen RDF-Diagramm dargestellten Daten erhalten bleiben. Darüber hinaus sind die kompakten Darstellungen in der Lage, die Anzahl der RDF-Tripel um mindestens 53,25% in historischen Beobachtungsdaten und bis zu 94,34% in Beobachtungsdatenströmen zu reduzieren. Darüber hinaus reduzieren die Ergebnisse der Anfrageauswertung über historische Daten die Ausführungszeit der Anfrage um bis zu drei Größenordnungen. In Beobachtungsdatenströmen wird die Größe der zur Beantwortung der Anfrage benötigten Daten um 92,53% reduziert, wodurch der Speicherplatzbedarf zur Beantwortung der Anfragen reduziert wird. Diese Ergebnisse belegen, dass IoT-Daten mit den vorgeschlagenen kompakten Darstellungen effizient dargestellt werden können, wodurch die negativen Auswirkungen semantischer Annotationen auf das IoT-Datenmanagement reduziert werden.The Internet of Things (IoT) concept has been widely adopted in several domains to enable devices to interact with each other and perform certain tasks. IoT devices encompass different concepts, e.g., sensors, programs, computers, and actuators. IoT devices observe their surroundings to collect information and communicate with each other in order to perform mutual tasks. These devices continuously generate observational data streams, which become historical data when these observations are stored. Due to an increase in the number of IoT devices, a large amount of streaming and historical observational data is being produced. Moreover, several ontologies, like the Semantic Sensor Network (SSN) Ontology, have been proposed for semantic annotation of observational data-either streams or historical. Resource Description Framework (RDF) is widely adopted data model to semantically describe the datasets. Semantic annotation provides a shared understanding for processing and analysis of observational data. However, adding semantics, further increases the data size especially when the observation values are redundantly sensed by several devices. For example, several sensors can generate observations indicating the same value for relative humidity in a given timestamp and city. This situation can be represented in an RDF graph using four RDF triples where observations are represented as triples that describe the observed phenomenon, the unit of measurement, the timestamp, and the coordinates. The RDF triples of an observation are associated with the same subject. Such observations share the same objects in a certain group of properties, i.e., they match star patterns composed of these properties and objects. In case the number of these subject entities or properties in these star patterns is large, the size of the RDF graph and query processing are negatively impacted; we refer these star patterns as frequent star patterns. This thesis addresses the problem of identifying frequent star patterns in RDF graphs and develop computational methods to identify frequent star patterns and generate a factorized RDF graph where the number of frequent star patterns is minimized. Furthermore, we apply these factorized RDF representations over historical semantic sensor data described using the SSN ontology and present tabular-based representations of factorized semantic sensor data in order to exploit Big Data frameworks. In addition, this thesis devises a knowledge-driven approach named DESERT that is able to on-Demand factorizE and Semantically Enrich stReam daTa. We evaluate the performance of our proposed techniques on several RDF graph benchmarks. The outcomes show that our techniques are able to effectively and efficiently detect frequent star patterns and RDF graph size can be reduced by up to 66.56% while data represented in the original RDF graph is preserved. Moreover, the compact representations are able to reduce the number of RDF triples by at least 53.25% in historical observational data and upto 94.34% in observational data streams. Additionally, query evaluation results over historical data reduce query execution time by up to three orders of magnitude. In observational data streams the size of the data required to answer the query is reduced by 92.53% reducing the memory space requirements to answer the queries. These results provide evidence that IoT data can be efficiently represented using the proposed compact representations, reducing thus, the negative impact that semantic annotations may have on IoT data management
    corecore