12 research outputs found

    The telecommunications and data acquisition report

    Get PDF
    Developments in Earth based radio technology with applications to space communications, geodynamics, and astrophysics are reported

    Unified p astro for gravitational waves: Consistently combining information from multiple search pipelines

    Get PDF
    Recent gravitational-wave transient catalogs have used p astro, the probability that a gravitational-wave candidate is astrophysical, to select interesting candidates for further analysis. Unlike false alarm rates, which exclusively capture the statistics of the instrumental noise triggers, p astro incorporates the rate at which triggers are generated by both astrophysical signals and instrumental noise in estimating the probability that a candidate is astrophysical. Multiple search pipelines can independently calculate p astro, each employing a specific data reduction. While the range of p astro results can help indicate the range of uncertainties in its calculation, it complicates interpretation and subsequent analyses. We develop a statistical formalism to calculate a unified p astro for gravitational-wave candidates, consistently accounting for triggers from all pipelines, thereby incorporating extra information about a signal that is not available with any one single pipeline. We demonstrate the properties of this method using a toy model and by application to the publicly available list of gravitational-wave candidates from the first half of the third LIGO-Virgo-KAGRA observing run. Adopting a unified p astro for future catalogs would provide a simple and easy-to-interpret selection criterion that incorporates a more complete understanding of the strengths of the different search pipelines

    The application of auditory signal processing principles to the detection, tracking and association of tonal components in sonar.

    Get PDF
    A steady signal exerts two complementary effects on a noisy acoustic environment: one is to add energy, the other is to create order. The ear has evolved mechanisms to detect both effects and encodes the fine temporal detail of a stimulus in sequences of auditory nerve discharges. Taking inspiration from these ideas, this thesis investigates the use of regular timing for sonar signal detection. Algorithms that operate on the temporal structure of a received signal are developed for the detection of merchant vessels. These ideas are explored by reappraising three areas traditionally associated with power-based detection. First of all, a time-frequency display based on timing instead of power is developed. Rather than inquiring of the display, "How much energy has been measured at this frequency? ", one would ask, "How structured is the signal at this frequency? Is this consistent with a target? " The auditory-motivated zero crossings with peak amplitudes (ZCPA) algorithm forms the starting-point for this study. Next, matters related to quantitative system performance analysis are addressed, such as how often a system will fail to detect a signal in particular conditions, or how much energy is required to guarantee a certain probability of detection. A suite of optimal temporal receivers is designed and is subsequently evaluated using the same kinds of synthetic signal used to assess power-based systems: Gaussian processes and sinusoids. The final area of work considers how discrete components on a sonar signal display, such as tonals and transients, can be identified and organised according to auditory scene analysis principles. Two algorithms are presented and evaluated using synthetic signals: one is designed to track a tonal through transient events, and the other attempts to identify groups of comodulated tonals against a noise background. A demonstration of each algorithm is provided for recorded sonar signals

    Quantum limits in microscopy and spectroscopy

    Get PDF
    In recent years quantum metrology and quantum sensing have enabled the advancement of quantum technologies and research in fundamental physics. Through statistical analysis, in the context of parameter estimation, the amount of information about a parameter of interest encoded in a quantum state can be quantified. In this thesis we focus on the application of quantum estimation theory to imaging and spectroscopy with quantum light. We study the fundamental bound of the mean square error for an unbiased estimator in terms of the quantum Fisher information (QFI) for two problems, one in microscopy and one in spectroscopy. Firstly, we study the problem of localising multiple point sources below the diffraction limit. We show that localisation microscopy of multiple weak, incoherent point sources with possibly different intensities in one spatial dimension is equivalent to estimating the amplitudes of a classical mixture of coherent states of a simple harmonic oscillator. We obtain the QFI matrix elements analytically. In the regime of arbitrarily small separations we find it to be no more than rank two – implying that no more than two independent parameters can be estimated irrespective of the number of point sources. We use the eigenvalues of the classical and quantum Fisher information matrices to compare the performance of spatial-mode demultiplexing and direct imaging in localisation microscopy with respect to the quantum limits. Secondly, we study the estimation of the electric dipole moment (EDM) of a two-level atom through its interaction with quantum pulses of light in free space. We derive analytical expressions for the states of one-photon wavepackets and entangled photon pairs (EPP). We numerically calculate the QFI for different states of light, including coherent and squeezed pulses, and compare their performance in estimating the EDM. We find that the one-photon wavepacket and the EPP have similar performances, while the performance of the entangled photon pair is not improved by increasing the entanglement of the EPP. Our results indicate that using Fock states to estimate the EDM of a two-level atom is preferable to using entangled light

    Research and technology

    Get PDF
    Significant research and technology activities at the Johnson Space Center (JSC) during Fiscal Year 1990 are reviewed. Research in human factors engineering, the Space Shuttle, the Space Station Freedom, space exploration and related topics are covered

    Middle Atmosphere Program. Handbook for MAP, volume 28

    Get PDF
    Extended abstracts from the fourth workshop on the technical and scientific aspects of MST (mesosphere stratosphere troposphere) radar are presented. Individual sessions addressed the following topics: meteorological applications of MST and ST radars, networks, and campaigns; dynamics of the equatorial middle atmosphere; interpretation of radar returns from clear air; techniques for studying gravity waves and turbulence; intercomparison and calibration of wind and wave measurements at various frequencies; progress in existing and planned MST and ST radars; hardware design for MST and ST radars and boundary layer/lower troposphere profilers; signal processing; and data management

    Aeronautical Engineering: A special bibliography with indexes, Supplement 35, September 1973

    Get PDF
    This special bibliography lists 614 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1973

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Publications of the Jet Propulsion Laboratory 1976

    Get PDF
    The formalized technical reporting, released January through December 1975, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory is described and indexed. The following classes of publications are included: (1) technical reports; (2) technical memorandums; (3) articles from bi-monthly Deep Space Network (DSN) progress report; (4) special publications; and (5) articles published in the open literature. The publications are indexed by: (1) author, (2) subject, and (3) publication type and number. A descriptive entry appears under the name of each author of each publication; an abstract is included with the entry for the primary (first-listed) author. Unless designated otherwise, all publications listed are unclassified
    corecore