5,167 research outputs found

    Component technologies: Java Beans, COM, CORBA, RMI, EJB and the CORBA component model

    Get PDF
    This one-day tutorial is aimed at software engineering practitioners and researchers, who are familiar with objectoriented analysis, design and programming and want to obtain an overview of the technologies that are enabling component-based development. We introduce the idea of component-based development by defining the concept and providing its economic rationale. We describe how object-oriented programming evolved into local component models, such as Java Beans and distributed object technologies, such as the Common Object Request Broker Architecture (CORBA), Java Remote Method Invocation (RMI) and the Component Object Model (COM). We then address how these technologies matured into distributed component models, in partiuclar Enterprise Java Beans (EJB) and the CORBA Component Model (CCM). We give an assessment of the maturity of each of these technologies and sketch how they are used to build distributed architectures

    The pros and cons of using SDL for creation of distributed services

    Get PDF
    In a competitive market for the creation of complex distributed services, time to market, development cost, maintenance and flexibility are key issues. Optimizing the development process is very much a matter of optimizing the technologies used during service creation. This paper reports on the experience gained in the Service Creation projects SCREEN and TOSCA on use of the language SDL for efficient service creation

    Component technologies: Java Beans, COM, CORBA, RMI, EJB and the CORBA component model

    Get PDF
    This one-day tutorial is aimed at software engineering practitioners and researchers, who are familiar with objectoriented analysis, design and programming and want to obtain an overview of the technologies that are enabling component-based development. We introduce the idea of component-based development by dening the concept and providing its economic rationale. We describe how objectoriented programming evolved into local component models, such as Java Beans and distributed object technologies, such as the Common Object Request Broker Architecture (CORBA), Java Remote Method Invocation (RMI) and the Component Object Model (COM). We then address how these technologies matured into distributed component models, in partiuclar Enterprise Java Beans (EJB) and the CORBA Component Model (CCM). We give an assessment of the maturity of each of these technologies and sketch how they are used to build distributed architectures

    Experiences modelling and using object-oriented telecommunication service frameworks in SDL

    Get PDF
    This paper describes experiences in using SDL and its associated tools to create telecommunication services by producing and specialising object-oriented frameworks. The chosen approach recognises the need for the rapid creation of validated telecommunication services. It introduces two stages to service creation. Firstly a software expert produces a service framework, and secondly a telecommunications ‘business consultant' specialises the framework by means of graphical tools to rapidly produce services. Here the focus is given to the underlying technology required. In particular, the advantages and disadvantages of SDL and tools for this purpose are highlighted

    Software engineering and middleware: a roadmap (Invited talk)

    Get PDF
    The construction of a large class of distributed systems can be simplified by leveraging middleware, which is layered between network operating systems and application components. Middleware resolves heterogeneity and facilitates communication and coordination of distributed components. Existing middleware products enable software engineers to build systems that are distributed across a local-area network. State-of-the-art middleware research aims to push this boundary towards Internet-scale distribution, adaptive and reconfigurable middleware and middleware for dependable and wireless systems. The challenge for software engineering research is to devise notations, techniques, methods and tools for distributed system construction that systematically build and exploit the capabilities that middleware deliver

    Using real options to select stable Middleware-induced software architectures

    Get PDF
    The requirements that force decisions towards building distributed system architectures are usually of a non-functional nature. Scalability, openness, heterogeneity, and fault-tolerance are examples of such non-functional requirements. The current trend is to build distributed systems with middleware, which provide the application developer with primitives for managing the complexity of distribution, system resources, and for realising many of the non-functional requirements. As non-functional requirements evolve, the `coupling' between the middleware and architecture becomes the focal point for understanding the stability of the distributed software system architecture in the face of change. It is hypothesised that the choice of a stable distributed software architecture depends on the choice of the underlying middleware and its flexibility in responding to future changes in non-functional requirements. Drawing on a case study that adequately represents a medium-size component-based distributed architecture, it is reported how a likely future change in scalability could impact the architectural structure of two versions, each induced with a distinct middleware: one with CORBA and the other with J2EE. An option-based model is derived to value the flexibility of the induced-architectures and to guide the selection. The hypothesis is verified to be true for the given change. The paper concludes with some observations that could stimulate future research in the area of relating requirements to software architectures

    Migration from client/server architecture to internet computing architecture

    Get PDF
    The Internet Computing Architecture helps in providing a object-based infrastructure that can be used by the application developers to design, develop, and deploy the ntiered enterprise applications and services. For years of distributed application development, the Internet Computing Architecture has helped in providing various techniques and infrastructure software for the successful deployment of various systems, and established a foundation for the promotion of re-use and component oriented development. Object-oriented analysis is at the beginning of this architecture, which is carried through deploying and managing of finished systems. This architecture is multi-platform, multi-lingual, standards-based, and open that offers unparalleled integration capability. And for the development of mission critical systems in record time it has allowed for the reuse of the infrastructure components. This paper provides a detailed overview of the Internet Computing Architecture and the way it is applied to designing systems which can range from simple two-tier applications to n-tier Web/Object enterprise systems. Even for the best software developers and managers it is very hard to sort through alternative solutions in today\u27s business application development challenges. The problems with the potential solutions were not that complex now that the web has provided the medium for large-scale distributed computing. To implement an infrastructure for the support of applications architecture and to foster the component-oriented development and reuse is an extraordinary challenge. Further, to scale the needs of large enterprises and the Web/Internet the advancement in the multi-tiered middleware software have made the development of object-oriented systems more difficult. The Internet Computing Architecture defines a scaleable architecture, which can provide the necessary software components, which forms the basis of the solid middleware foundation and can address the different application types. For the software development process to be component-oriented the design and development methodologies are interwoven. The biggest advantage of the Internet Computing Architecture is that developers can design object application servers that can simultaneously support two- and three-tier Client/Server and Object/Web applications. This kind of flexibility allows different business objects to be reused by a large number of applications that not only supports a wide range of application architectures but also offers the flexibility in infrastructure for the integration of data sources. The server-based business objects are managed by runtime services with full support for application to be partitioned in a transactional-secure distributed environment. So for the environments that a supports high transaction volumes and a large number of users this offers a high scaleable solution. The integration of the distributed object technology with protocols of the World Wide Web is Internet Computing Architecture. Alternate means of communication between a browser on client machine and server machines are provided by various web protocols such as Hypertext Transfer Protocol and Internet Inter-ORB Protocol [NOP]. Protocols like TCP/IP also provides the addressing protocols and packetoriented transport for the Internet and Intranet communications. The recent advancements in the field of networking and worldwide web technology has promoted a new network-centric computing structure. World Wide Web evolves the global economy infrastructure both on the public and corporate Internet\u27s. The competition is growing between technologies to provide the infrastructure for distributed large-scale applications. These technologies emerge from academia, standard activities and individual vendors. Internet Computing Architecture is a comprehensive, open, Network-based architecture that provides extensibility for the design of distributed environments. Internet Computing Architecture also provides a clear understanding to integrate client/server computing with distributed object architectures and the Internet. This technology also creates the opportunity for a new emerging class of extremely powerful operational, collaboration, decision support, and e-commerce solutions which will catalyze the growth of a new networked economy based on intrabusiness, business -to-business (B2B) and business-to-consumer (B2C) electronic transactions. These network solutions would be able to incorporate legacy mainframe systems, emerging applications as well as existing client/server environment, where still most of the world\u27s mission-critical applications run. Internet Computing Architecture is the industry\u27s only cross-platform infrastructure to develop and deploy network-centric, object-based, end-to-end applications across the network. Open and de facto standards are at the core of the Internet computing architecture such as: Hyper Text Transfer Protocol (HTTP)/ Hyper Text Markup Language (HTML)/ Extensible Markup Language (XML) and Common Object Request Broker Architecture (CORBA). It has recognition, as the industry\u27s most advanced and practical technology solution for the implementation of a distributed object environment, including Interface Definition Language (IDL) for languageneutral interfaces and Internet Inter Operability (MOP) for object interoperability. Programming languages such as JAVA provides programmable, extensible and portable solutions throughout the Internet Computing Architecture. Internet Computing Architecture not only provides support, but also enhances ActiveX/Component Object Model (COM) clients through open COM/CORBA interoperability specifications. For distributed object-programming Java has also emerged as the de facto standard within the Internet/Intranet arena, making Java ideally suited to the distributed object nature of the Internet Computing Architecture. The portability that it offers across multi-tiers and platforms support open standards and makes it an excellent choice for cartridge development across all tiers
    corecore