32,558 research outputs found

    SIRENA: A CAD environment for behavioural modelling and simulation of VLSI cellular neural network chips

    Get PDF
    This paper presents SIRENA, a CAD environment for the simulation and modelling of mixed-signal VLSI parallel processing chips based on cellular neural networks. SIRENA includes capabilities for: (a) the description of nominal and non-ideal operation of CNN analogue circuitry at the behavioural level; (b) performing realistic simulations of the transient evolution of physical CNNs including deviations due to second-order effects of the hardware; and, (c) evaluating sensitivity figures, and realize noise and Monte Carlo simulations in the time domain. These capabilities portray SIRENA as better suited for CNN chip development than algorithmic simulation packages (such as OpenSimulator, Sesame) or conventional neural networks simulators (RCS, GENESIS, SFINX), which are not oriented to the evaluation of hardware non-idealities. As compared to conventional electrical simulators (such as HSPICE or ELDO-FAS), SIRENA provides easier modelling of the hardware parasitics, a significant reduction in computation time, and similar accuracy levels. Consequently, iteration during the design procedure becomes possible, supporting decision making regarding design strategies and dimensioning. SIRENA has been developed using object-oriented programming techniques in C, and currently runs under the UNIX operating system and X-Windows framework. It employs a dedicated high-level hardware description language: DECEL, fitted to the description of non-idealities arising in CNN hardware. This language has been developed aiming generality, in the sense of making no restrictions on the network models that can be implemented. SIRENA is highly modular and composed of independent tools. This simplifies future expansions and improvements.ComisiĂłn Interministerial de Ciencia y TecnologĂ­a TIC96-1392-C02-0

    Chip level simulation of fault tolerant computers

    Get PDF
    Chip level modeling techniques, functional fault simulation, simulation software development, a more efficient, high level version of GSP, and a parallel architecture for functional simulation are discussed

    Simulation-based high-level synthesis of Nyquist-rate data converters using MATLAB/SIMULINK

    Get PDF
    This paper presents a toolbox for the simulation, optimization and high-level synthesis of Nyquist-rate Analog-to-Digital (A/D) and Digital-to-Analog (D/A) Converters in MATLABÂź. The embedded simulator uses SIMULINKÂź C-coded S-functions to model all required subcircuits including their main error mechanisms. This approach allows to drastically speed up the simulation CPU-time up to 2 orders of magnitude as compared with previous approaches - based on the use of SIMULINKÂź elementary blocks. Moreover, S-functions are more suitable for implementing a more detailed description of the circuit. For all subcircuits, the accuracy of the behavioral models has been verified by electrical simulation using HSPICE. For synthesis purposes, the simulator is used for performance evaluation and combined with an hybrid optimizer for design parameter selection. The optimizer combines adaptive statistical optimization algorithm inspired in simulated annealing with a design-oriented formulation of the cost function. It has been integrated in the MATLAB/SIMULINKÂź platform by using the MATLABÂź engine library, so that the optimization core runs in background while MATLABÂź acts as a computation engine. The implementation on the MATLABÂź platform brings numerous advantages in terms of signal processing, high flexibility for tool expansion and simulation with other electronic subsystems. Additionally, the presented toolbox comprises a friendly graphical user interface to allow the designer to browse through all steps of the simulation, synthesis and post-processing of results. In order to illustrate the capabilities of the toolbox, a 0.13)im CMOS 12bit@80MS/s analog front-end for broadband power line communications, made up of a pipeline ADC and a current steering DAC, is synthesized and high-level sized. Different experiments show the effectiveness of the proposed methodology.Ministerio de Ciencia y TecnologĂ­a TIC2003-02355RAICONI

    Towards a Unified Theory of Neocortex: Laminar Cortical Circuits for Vision and Cognition

    Full text link
    A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Efficient Simulation of Structural Faults for the Reliability Evaluation at System-Level

    Get PDF
    In recent technology nodes, reliability is considered a part of the standard design Âżow at all levels of embedded system design. While techniques that use only low-level models at gate- and register transfer-level offer high accuracy, they are too inefficient to consider the overall application of the embedded system. Multi-level models with high abstraction are essential to efficiently evaluate the impact of physical defects on the system. This paper provides a methodology that leverages state-of-the-art techniques for efficient fault simulation of structural faults together with transaction-level modeling. This way it is possible to accurately evaluate the impact of the faults on the entire hardware/software system. A case study of a system consisting of hardware and software for image compression and data encryption is presented and the method is compared to a standard gate/RT mixed-level approac

    Assessment of thermal instabilities and oscillations in multifinger heterojunction bipolar transistors through a harmonic-balance-based CAD-oriented dynamic stability analysis technique

    Get PDF
    We present a novel analysis of thermal instabilities and oscillations in multifinger heterojunction bipolar transistors (HBTs), based on a harmonic-balance computer-aided-design (CAD)-oriented approach to the dynamic stability assessment. The stability analysis is carried out in time-periodic dynamic conditions by calculating the Floquet multipliers of the limit cycle representing the HBT working point. Such a computation is performed directly in the frequency domain, on the basis of the Jacobian of the harmonic-balance problem yielding the limit cycle. The corresponding stability assessment is rigorous, and the efficient calculation method makes it readily implementable in CAD tools, thus allowing for circuit and device optimization. Results on three- and four-finger layouts are presented, including closed-form oscillation criteria for two-finger device

    Behavioral Models of I/O Ports from Measured Transient Waveforms

    Get PDF
    This paper addresses the development of accurate and efficient behavioral models of digital integrated circuit ports from measured transient responses. The proposed approach is based on the estimation of parametric models from port voltage and current waveforms. The modeling process is described and applied to the modeling of output ports. Its feasibility is demonstrated by the identification of a real device from actual measurements, and by the comparison of the predicted device response with the measured one
    • 

    corecore