2,079 research outputs found

    Zero-gravity movement studies

    Get PDF
    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms

    Socionic Multi-Agent Systems Based on Reflexive Petri Nets and Theories of Social Self-Organisation

    Get PDF
    This contribution summarises the core results of the transdisciplinary ASKO project, part of the German DFG's programme Sozionik, which combines sociologists' and computer scientists' skills in order to create improved theories and models of artificial societies. Our research group has (a) formulated a social theory, which is able to explain fundamental mechanisms of self-organisation in both natural and artificial societies, (b) modelled this in a mathematical way using a visual formalism, and (c) developed a novel multi-agent system architecture which is conceptually coherent, recursively structured (hence non-eclectic) and based on our social theory. The article presents an outline of both a sociological middle-range theory of social self-organisation in educational institutions, its formal, Petri net based model, including a simulation of one of its main mechanisms, and the multi-agent system architecture SONAR. It describes how the theory was created by a re-analysis of some grand social theories, by grounding it empirically, and finally how the theory was evaluated by modelling its concepts and statements.Multi-Agents Systems, Petri Nets, Self-Organisation, Social Theories

    A methodology for complex embedded systems design : Petri nets within a UML approach

    Get PDF
    This paper focus mainly on the analysis phase, describing a UML-based approach for designing complex embedded systems, and specifically the usefulness of using shobi-PN v2.0 specifications, a Petri net extension, for modelling the dynamic behaviour. A relative complex case study is used to show the usefulness of the suggested specification approach

    Coloured Petri Nets - a Pragmatic Formal Method for Designing and Analysing Distributed Systems

    Get PDF
    The thesis consists of six individual papers, where the present paper contains the mandatory overview, while the remaining five papers are found separately from the overview. The five papers can roughly be divided into three areas of research, namely case studies, education, and extensions to the CPN method.The primary purpose of the PhD thesis is to study the pragmatics, practical aspects, and intuition of CP-nets viewed as a formal method for describing and reasoning about concurrent systems. The perspective of pragmatics is our leitmotif, but at the same time in the context of CP-nets it is a kind of hypothesis of this thesis. This overview paper summarises the research conducted as an investigation of the hypothesis in the three areas of case studies, education, and extensions.The provoking claim of pragmatics should not be underestimated. In the present overview of the thesis, the CPN method is compared with a representative selection of formal methods. The graphics and simplicity of semantics, yet generality and expressiveness of the language constructs, essentially makes CP-nets a viable and attractive alternative to other formal methods. Similar graphical formal methods, such as SDL and Statecharts, typically have significantly more complicated semantics, or are domain-specific languages.research conducted in this thesis, opens a new complex of problems. Firstly, to get wider acceptance of CP-nets in industry, it is important to identify fruitful areas for the effective introduction of the CPN method. Secondly, it would be useful to identify a few extensions to the CPN method inspired by specific domains for easier adaption in industry. Thirdly, which analysis methods do future systems make use of

    Representing Conversations for Scalable Overhearing

    Full text link
    Open distributed multi-agent systems are gaining interest in the academic community and in industry. In such open settings, agents are often coordinated using standardized agent conversation protocols. The representation of such protocols (for analysis, validation, monitoring, etc) is an important aspect of multi-agent applications. Recently, Petri nets have been shown to be an interesting approach to such representation, and radically different approaches using Petri nets have been proposed. However, their relative strengths and weaknesses have not been examined. Moreover, their scalability and suitability for different tasks have not been addressed. This paper addresses both these challenges. First, we analyze existing Petri net representations in terms of their scalability and appropriateness for overhearing, an important task in monitoring open multi-agent systems. Then, building on the insights gained, we introduce a novel representation using Colored Petri nets that explicitly represent legal joint conversation states and messages. This representation approach offers significant improvements in scalability and is particularly suitable for overhearing. Furthermore, we show that this new representation offers a comprehensive coverage of all conversation features of FIPA conversation standards. We also present a procedure for transforming AUML conversation protocol diagrams (a standard human-readable representation), to our Colored Petri net representation
    corecore