59 research outputs found

    Target Tracking in Confined Environments with Uncertain Sensor Positions

    Get PDF
    To ensure safety in confined environments such as mines or subway tunnels, a (wireless) sensor network can be deployed to monitor various environmental conditions. One of its most important applications is to track personnel, mobile equipment and vehicles. However, the state-of-the-art algorithms assume that the positions of the sensors are perfectly known, which is not necessarily true due to imprecise placement and/or dropping of sensors. Therefore, we propose an automatic approach for simultaneous refinement of sensors' positions and target tracking. We divide the considered area in a finite number of cells, define dynamic and measurement models, and apply a discrete variant of belief propagation which can efficiently solve this high-dimensional problem, and handle all non-Gaussian uncertainties expected in this kind of environments. Finally, we use ray-tracing simulation to generate an artificial mine-like environment and generate synthetic measurement data. According to our extensive simulation study, the proposed approach performs significantly better than standard Bayesian target tracking and localization algorithms, and provides robustness against outliers.Comment: IEEE Transactions on Vehicular Technology, 201

    Conveying and Handling Location Information in the IP Multimedia Subsystem

    Get PDF
    The IP Multimedia Subsystem (IMS), specified by the 3rd Generation Partnership Project (3GPP), is a key element in the next-generation network (NGN) converged architecture. Extending the IMS towards provisioning support for location based services (LBS) will enable enhanced services and offer new revenues to the operator. Conveying location information in the IMS and connecting the IMS with a positioning system are still open issues. This paper presents the design and implementation of an IMS Location Server (ILS) integrating IMS with a positioning system. From the IMS perspective, the ILS serves as a service enabler for LBS. In order to demonstrate proof-of-concept in enhancing IMS-based services, two prototype service scenarios have been implemented: Location-aware Messaging (LaM), and Location-aware Push-to-Talk over cellular (LaPoC). Some work has been done by the IETF in the area of location information transport based on the Session Initiation Protocol (SIP). This paper proposes improvements in this area, primarily related to reducing the necessary amount of signaling with the specification of a new type of location filter. We have conducted measurements in a laboratory environment in order to illustrate our proposed solution and verify the benefits compared to existing solutions in terms of traffic load and session establishment time. Furthermore, we present a case study integrating the ILS with the Ericsson Mobile Positioning System (MPS)

    Geocoding of trees from street addresses and street-level images

    Get PDF
    We introduce an approach for updating older tree inventories with geographic coordinates using street-level panorama images and a global optimization framework for tree instance matching. Geolocations of trees in inventories until the early 2000s where recorded using street addresses whereas newer inventories use GPS. Our method retrofits older inventories with geographic coordinates to allow connecting them with newer inventories to facilitate long-term studies on tree mortality etc. What makes this problem challenging is the different number of trees per street address, the heterogeneous appearance of different tree instances in the images, ambiguous tree positions if viewed from multiple images and occlusions. To solve this assignment problem, we (i) detect trees in Google street-view panoramas using deep learning, (ii) combine multi-view detections per tree into a single representation, (iii) and match detected trees with given trees per street address with a global optimization approach. Experiments for trees in 5 cities in California, USA, show that we are able to assign geographic coordinates to 38% of the street trees, which is a good starting point for long-term studies on the ecosystem services value of street trees at large scale

    Machine Learning and Pattern Recognition Methods for Remote Sensing Image Registration and Fusion

    Get PDF
    In the last decade, the remote sensing world has dramatically evolved. New types of sensor, each one collecting data with possibly different modalities, have been designed, developed, and deployed. Moreover, new missions have been planned and launched, aimed not only at collecting data of the Earth's surface, but also at acquiring planetary data in support of the study of the whole Solar system. Indeed, such a variety of technologies highlights the need for automatic methods able to effectively exploit all the available information. In the last years, lot of effort has been put in the design and development of advanced data fusion methods able to extract and make use of all the information available from as many complementary information sources as possible. Indeed, the goal of this thesis is to present novel machine learning and pattern recognition methodologies designed to support the exploitation of diverse sources of information, such as multisensor, multimodal, or multiresolution imagery. In this context, image registration plays a major role as is allows bringing two or more digital images into precise alignment for analysis and comparison. Here, image registration is tackled using both feature-based and area-based strategies. In the former case, the features of interest are extracted using a stochastic geometry model based on marked point processes, while, in the latter case, information theoretic functionals and the domain adaptation capabilities of generative adversarial networks are exploited. In addition, multisensor image registration is also applied in a large scale scenario by introducing a tiling-based strategy aimed at minimizing the computational burden, which is usually heavy in the multisensor case due to the need for information theoretic similarity measures. Moreover, automatic change detection with multiresolution and multimodality imagery is addressed via a novel Markovian framework based on a linear mixture model and on an ad-hoc multimodal energy function minimized using graph cuts or belied propagation methods. The statistics of the data at the various spatial scales is modelled through appropriate generalized Gaussian distributions and by iteratively estimating a set of virtual images, at the finest resolution, representing the data that would have been collected in case all the sensors worked at that resolution. All such methodologies have been experimentally evaluated with respect to different datasets, and with particular focus on the trade-off between the achievable performances and the demands in terms of computational resources. Moreover, such methods are also compared with state-of-the-art solutions, and are analyzed in terms of future developments, giving insights to possible future lines of research in this field

    Generalized Sparse Convolutional Neural Networks for Semantic Segmentation of Point Clouds Derived from Tri-Stereo Satellite Imagery

    Get PDF
    We studied the applicability of point clouds derived from tri-stereo satellite imagery for semantic segmentation for generalized sparse convolutional neural networks by the example of an Austrian study area. We examined, in particular, if the distorted geometric information, in addition to color, influences the performance of segmenting clutter, roads, buildings, trees, and vehicles. In this regard, we trained a fully convolutional neural network that uses generalized sparse convolution one time solely on 3D geometric information (i.e., 3D point cloud derived by dense image matching), and twice on 3D geometric as well as color information. In the first experiment, we did not use class weights, whereas in the second we did. We compared the results with a fully convolutional neural network that was trained on a 2D orthophoto, and a decision tree that was once trained on hand-crafted 3D geometric features, and once trained on hand-crafted 3D geometric as well as color features. The decision tree using hand-crafted features has been successfully applied to aerial laser scanning data in the literature. Hence, we compared our main interest of study, a representation learning technique, with another representation learning technique, and a non-representation learning technique. Our study area is located in Waldviertel, a region in Lower Austria. The territory is a hilly region covered mainly by forests, agriculture, and grasslands. Our classes of interest are heavily unbalanced. However, we did not use any data augmentation techniques to counter overfitting. For our study area, we reported that geometric and color information only improves the performance of the Generalized Sparse Convolutional Neural Network (GSCNN) on the dominant class, which leads to a higher overall performance in our case. We also found that training the network with median class weighting partially reverts the effects of adding color. The network also started to learn the classes with lower occurrences. The fully convolutional neural network that was trained on the 2D orthophoto generally outperforms the other two with a kappa score of over 90% and an average per class accuracy of 61%. However, the decision tree trained on colors and hand-crafted geometric features has a 2% higher accuracy for roads

    Geo-rectification and cloud-cover correction of multi-temporal Earth observation imagery

    Get PDF
    Over the past decades, improvements in remote sensing technology have led to mass proliferation of aerial imagery. This, in turn, opened vast new possibilities relating to land cover classification, cartography, and so forth. As applications in these fields became increasingly more complex, the amount of data required also rose accordingly and so, to satisfy these new needs, automated systems had to be developed. Geometric distortions in raw imagery must be rectified, otherwise the high accuracy requirements of the newest applications will not be attained. This dissertation proposes an automated solution for the pre-stages of multi-spectral satellite imagery classification, focusing on Fast Fourier Shift theorem based geo-rectification and multi-temporal cloud-cover correction. By automatizing the first stages of image processing, automatic classifiers can take advantage of a larger supply of image data, eventually allowing for the creation of semi-real-time mapping applications
    corecore