8,976 research outputs found

    Energy-Efficient Object Detection using Semantic Decomposition

    Full text link
    Machine-learning algorithms offer immense possibilities in the development of several cognitive applications. In fact, large scale machine-learning classifiers now represent the state-of-the-art in a wide range of object detection/classification problems. However, the network complexities of large-scale classifiers present them as one of the most challenging and energy intensive workloads across the computing spectrum. In this paper, we present a new approach to optimize energy efficiency of object detection tasks using semantic decomposition to build a hierarchical classification framework. We observe that certain semantic information like color/texture are common across various images in real-world datasets for object detection applications. We exploit these common semantic features to distinguish the objects of interest from the remaining inputs (non-objects of interest) in a dataset at a lower computational effort. We propose a 2-stage hierarchical classification framework, with increasing levels of complexity, wherein the first stage is trained to recognize the broad representative semantic features relevant to the object of interest. The first stage rejects the input instances that do not have the representative features and passes only the relevant instances to the second stage. Our methodology thus allows us to reject certain information at lower complexity and utilize the full computational effort of a network only on a smaller fraction of inputs to perform detection. We use color and texture as distinctive traits to carry out several experiments for object detection. Our experiments on the Caltech101/CIFAR10 dataset show that the proposed method yields 1.93x/1.46x improvement in average energy, respectively, over the traditional single classifier model.Comment: 10 pages, 13 figures, 3 algorithms, Submitted to IEEE TVLSI(Under Review

    Network Decoupling: From Regular to Depthwise Separable Convolutions

    Full text link
    Depthwise separable convolution has shown great efficiency in network design, but requires time-consuming training procedure with full training-set available. This paper first analyzes the mathematical relationship between regular convolutions and depthwise separable convolutions, and proves that the former one could be approximated with the latter one in closed form. We show depthwise separable convolutions are principal components of regular convolutions. And then we propose network decoupling (ND), a training-free method to accelerate convolutional neural networks (CNNs) by transferring pre-trained CNN models into the MobileNet-like depthwise separable convolution structure, with a promising speedup yet negligible accuracy loss. We further verify through experiments that the proposed method is orthogonal to other training-free methods like channel decomposition, spatial decomposition, etc. Combining the proposed method with them will bring even larger CNN speedup. For instance, ND itself achieves about 2X speedup for the widely used VGG16, and combined with other methods, it reaches 3.7X speedup with graceful accuracy degradation. We demonstrate that ND is widely applicable to classification networks like ResNet, and object detection network like SSD300

    Gaussian Filter in CRF Based Semantic Segmentation

    Full text link
    Artificial intelligence is making great changes in academy and industry with the fast development of deep learning, which is a branch of machine learning and statistical learning. Fully convolutional network [1] is the standard model for semantic segmentation. Conditional random fields coded as CNN [2] or RNN [3] and connected with FCN has been successfully applied in object detection [4]. In this paper, we introduce a multi-resolution neural network for FCN and apply Gaussian filter to the extended CRF kernel neighborhood and the label image to reduce the oscillating effect of CRF neural network segmentation, thus achieve higher precision and faster training speed.Comment: 11 pages, 9 figures, 2 table

    Accelerated Inference in Markov Random Fields via Smooth Riemannian Optimization

    Full text link
    Markov Random Fields (MRFs) are a popular model for several pattern recognition and reconstruction problems in robotics and computer vision. Inference in MRFs is intractable in general and related work resorts to approximation algorithms. Among those techniques, semidefinite programming (SDP) relaxations have been shown to provide accurate estimates while scaling poorly with the problem size and being typically slow for practical applications. Our first contribution is to design a dual ascent method to solve standard SDP relaxations that takes advantage of the geometric structure of the problem to speed up computation. This technique, named Dual Ascent Riemannian Staircase (DARS), is able to solve large problem instances in seconds. Our second contribution is to develop a second and faster approach. The backbone of this second approach is a novel SDP relaxation combined with a fast and scalable solver based on smooth Riemannian optimization. We show that this approach, named Fast Unconstrained SEmidefinite Solver (FUSES), can solve large problems in milliseconds. Contrarily to local MRF solvers, e.g., loopy belief propagation, our approaches do not require an initial guess. Moreover, we leverage recent results from optimization theory to provide per-instance sub-optimality guarantees. We demonstrate the proposed approaches in multi-class image segmentation problems. Extensive experimental evidence shows that (i) FUSES and DARS produce near-optimal solutions, attaining an objective within 0.1% of the optimum, (ii) FUSES and DARS are remarkably faster than general-purpose SDP solvers, and FUSES is more than two orders of magnitude faster than DARS while attaining similar solution quality, (iii) FUSES is faster than local search methods while being a global solver.Comment: 16 page

    Leveraging Domain Knowledge to Improve Microscopy Image Segmentation with Lifted Multicuts

    Full text link
    The throughput of electron microscopes has increased significantly in recent years, enabling detailed analysis of cell morphology and ultrastructure. Analysis of neural circuits at single-synapse resolution remains the flagship target of this technique, but applications to cell and developmental biology are also starting to emerge at scale. The amount of data acquired in such studies makes manual instance segmentation, a fundamental step in many analysis pipelines, impossible. While automatic segmentation approaches have improved significantly thanks to the adoption of convolutional neural networks, their accuracy still lags behind human annotations and requires additional manual proof-reading. A major hindrance to further improvements is the limited field of view of the segmentation networks preventing them from exploiting the expected cell morphology or other prior biological knowledge which humans use to inform their segmentation decisions. In this contribution, we show how such domain-specific information can be leveraged by expressing it as long-range interactions in a graph partitioning problem known as the lifted multicut problem. Using this formulation, we demonstrate significant improvement in segmentation accuracy for three challenging EM segmentation problems from neuroscience and cell biology

    A Survey on Deep Learning Methods for Robot Vision

    Full text link
    Deep learning has allowed a paradigm shift in pattern recognition, from using hand-crafted features together with statistical classifiers to using general-purpose learning procedures for learning data-driven representations, features, and classifiers together. The application of this new paradigm has been particularly successful in computer vision, in which the development of deep learning methods for vision applications has become a hot research topic. Given that deep learning has already attracted the attention of the robot vision community, the main purpose of this survey is to address the use of deep learning in robot vision. To achieve this, a comprehensive overview of deep learning and its usage in computer vision is given, that includes a description of the most frequently used neural models and their main application areas. Then, the standard methodology and tools used for designing deep-learning based vision systems are presented. Afterwards, a review of the principal work using deep learning in robot vision is presented, as well as current and future trends related to the use of deep learning in robotics. This survey is intended to be a guide for the developers of robot vision systems

    cvpaper.challenge in 2016: Futuristic Computer Vision through 1,600 Papers Survey

    Full text link
    The paper gives futuristic challenges disscussed in the cvpaper.challenge. In 2015 and 2016, we thoroughly study 1,600+ papers in several conferences/journals such as CVPR/ICCV/ECCV/NIPS/PAMI/IJCV

    Knowledge-guided Semantic Computing Network

    Full text link
    It is very useful to integrate human knowledge and experience into traditional neural networks for faster learning speed, fewer training samples and better interpretability. However, due to the obscured and indescribable black box model of neural networks, it is very difficult to design its architecture, interpret its features and predict its performance. Inspired by human visual cognition process, we propose a knowledge-guided semantic computing network which includes two modules: a knowledge-guided semantic tree and a data-driven neural network. The semantic tree is pre-defined to describe the spatial structural relations of different semantics, which just corresponds to the tree-like description of objects based on human knowledge. The object recognition process through the semantic tree only needs simple forward computing without training. Besides, to enhance the recognition ability of the semantic tree in aspects of the diversity, randomicity and variability, we use the traditional neural network to aid the semantic tree to learn some indescribable features. Only in this case, the training process is needed. The experimental results on MNIST and GTSRB datasets show that compared with the traditional data-driven network, our proposed semantic computing network can achieve better performance with fewer training samples and lower computational complexity. Especially, Our model also has better adversarial robustness than traditional neural network with the help of human knowledge.Comment: 13 pages, 13 figure

    cvpaper.challenge in 2015 - A review of CVPR2015 and DeepSurvey

    Full text link
    The "cvpaper.challenge" is a group composed of members from AIST, Tokyo Denki Univ. (TDU), and Univ. of Tsukuba that aims to systematically summarize papers on computer vision, pattern recognition, and related fields. For this particular review, we focused on reading the ALL 602 conference papers presented at the CVPR2015, the premier annual computer vision event held in June 2015, in order to grasp the trends in the field. Further, we are proposing "DeepSurvey" as a mechanism embodying the entire process from the reading through all the papers, the generation of ideas, and to the writing of paper.Comment: Survey Pape

    A Review of Co-saliency Detection Technique: Fundamentals, Applications, and Challenges

    Full text link
    Co-saliency detection is a newly emerging and rapidly growing research area in computer vision community. As a novel branch of visual saliency, co-saliency detection refers to the discovery of common and salient foregrounds from two or more relevant images, and can be widely used in many computer vision tasks. The existing co-saliency detection algorithms mainly consist of three components: extracting effective features to represent the image regions, exploring the informative cues or factors to characterize co-saliency, and designing effective computational frameworks to formulate co-saliency. Although numerous methods have been developed, the literature is still lacking a deep review and evaluation of co-saliency detection techniques. In this paper, we aim at providing a comprehensive review of the fundamentals, challenges, and applications of co-saliency detection. Specifically, we provide an overview of some related computer vision works, review the history of co-saliency detection, summarize and categorize the major algorithms in this research area, discuss some open issues in this area, present the potential applications of co-saliency detection, and finally point out some unsolved challenges and promising future works. We expect this review to be beneficial to both fresh and senior researchers in this field, and give insights to researchers in other related areas regarding the utility of co-saliency detection algorithms.Comment: 28 pages, 12 figures, 3 table
    corecore