13,480 research outputs found

    Unsupervised Learning of Edges

    Full text link
    Data-driven approaches for edge detection have proven effective and achieve top results on modern benchmarks. However, all current data-driven edge detectors require manual supervision for training in the form of hand-labeled region segments or object boundaries. Specifically, human annotators mark semantically meaningful edges which are subsequently used for training. Is this form of strong, high-level supervision actually necessary to learn to accurately detect edges? In this work we present a simple yet effective approach for training edge detectors without human supervision. To this end we utilize motion, and more specifically, the only input to our method is noisy semi-dense matches between frames. We begin with only a rudimentary knowledge of edges (in the form of image gradients), and alternate between improving motion estimation and edge detection in turn. Using a large corpus of video data, we show that edge detectors trained using our unsupervised scheme approach the performance of the same methods trained with full supervision (within 3-5%). Finally, we show that when using a deep network for the edge detector, our approach provides a novel pre-training scheme for object detection.Comment: Camera ready version for CVPR 201

    Unsupervised learning of object landmarks by factorized spatial embeddings

    Full text link
    Learning automatically the structure of object categories remains an important open problem in computer vision. In this paper, we propose a novel unsupervised approach that can discover and learn landmarks in object categories, thus characterizing their structure. Our approach is based on factorizing image deformations, as induced by a viewpoint change or an object deformation, by learning a deep neural network that detects landmarks consistently with such visual effects. Furthermore, we show that the learned landmarks establish meaningful correspondences between different object instances in a category without having to impose this requirement explicitly. We assess the method qualitatively on a variety of object types, natural and man-made. We also show that our unsupervised landmarks are highly predictive of manually-annotated landmarks in face benchmark datasets, and can be used to regress these with a high degree of accuracy.Comment: To be published in ICCV 201

    Depth CNNs for RGB-D scene recognition: learning from scratch better than transferring from RGB-CNNs

    Full text link
    Scene recognition with RGB images has been extensively studied and has reached very remarkable recognition levels, thanks to convolutional neural networks (CNN) and large scene datasets. In contrast, current RGB-D scene data is much more limited, so often leverages RGB large datasets, by transferring pretrained RGB CNN models and fine-tuning with the target RGB-D dataset. However, we show that this approach has the limitation of hardly reaching bottom layers, which is key to learn modality-specific features. In contrast, we focus on the bottom layers, and propose an alternative strategy to learn depth features combining local weakly supervised training from patches followed by global fine tuning with images. This strategy is capable of learning very discriminative depth-specific features with limited depth images, without resorting to Places-CNN. In addition we propose a modified CNN architecture to further match the complexity of the model and the amount of data available. For RGB-D scene recognition, depth and RGB features are combined by projecting them in a common space and further leaning a multilayer classifier, which is jointly optimized in an end-to-end network. Our framework achieves state-of-the-art accuracy on NYU2 and SUN RGB-D in both depth only and combined RGB-D data.Comment: AAAI Conference on Artificial Intelligence 201

    Self-Supervised Relative Depth Learning for Urban Scene Understanding

    Full text link
    As an agent moves through the world, the apparent motion of scene elements is (usually) inversely proportional to their depth. It is natural for a learning agent to associate image patterns with the magnitude of their displacement over time: as the agent moves, faraway mountains don't move much; nearby trees move a lot. This natural relationship between the appearance of objects and their motion is a rich source of information about the world. In this work, we start by training a deep network, using fully automatic supervision, to predict relative scene depth from single images. The relative depth training images are automatically derived from simple videos of cars moving through a scene, using recent motion segmentation techniques, and no human-provided labels. This proxy task of predicting relative depth from a single image induces features in the network that result in large improvements in a set of downstream tasks including semantic segmentation, joint road segmentation and car detection, and monocular (absolute) depth estimation, over a network trained from scratch. The improvement on the semantic segmentation task is greater than those produced by any other automatically supervised methods. Moreover, for monocular depth estimation, our unsupervised pre-training method even outperforms supervised pre-training with ImageNet. In addition, we demonstrate benefits from learning to predict (unsupervised) relative depth in the specific videos associated with various downstream tasks. We adapt to the specific scenes in those tasks in an unsupervised manner to improve performance. In summary, for semantic segmentation, we present state-of-the-art results among methods that do not use supervised pre-training, and we even exceed the performance of supervised ImageNet pre-trained models for monocular depth estimation, achieving results that are comparable with state-of-the-art methods
    corecore