4,125 research outputs found

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Toward an object-based semantic memory for long-term operation of mobile service robots

    Get PDF
    Throughout a lifetime of operation, a mobile service robot needs to acquire, store and update its knowledge of a working environment. This includes the ability to identify and track objects in different places, as well as using this information for interaction with humans. This paper introduces a long-term updating mechanism, inspired by the modal model of human memory, to enable a mobile robot to maintain its knowledge of a changing environment. The memory model is integrated with a hybrid map that represents the global topology and local geometry of the environment, as well as the respective 3D location of objects. We aim to enable the robot to use this knowledge to help humans by suggesting the most likely locations of specific objects in its map. An experiment using omni-directional vision demonstrates the ability to track the movements of several objects in a dynamic environment over an extended period of time

    Cumulative object categorization in clutter

    Get PDF
    In this paper we present an approach based on scene- or part-graphs for geometrically categorizing touching and occluded objects. We use additive RGBD feature descriptors and hashing of graph configuration parameters for describing the spatial arrangement of constituent parts. The presented experiments quantify that this method outperforms our earlier part-voting and sliding window classification. We evaluated our approach on cluttered scenes, and by using a 3D dataset containing over 15000 Kinect scans of over 100 objects which were grouped into general geometric categories. Additionally, color, geometric, and combined features were compared for categorization tasks

    Fast Graph-Based Object Segmentation for RGB-D Images

    Full text link
    Object segmentation is an important capability for robotic systems, in particular for grasping. We present a graph- based approach for the segmentation of simple objects from RGB-D images. We are interested in segmenting objects with large variety in appearance, from lack of texture to strong textures, for the task of robotic grasping. The algorithm does not rely on image features or machine learning. We propose a modified Canny edge detector for extracting robust edges by using depth information and two simple cost functions for combining color and depth cues. The cost functions are used to build an undirected graph, which is partitioned using the concept of internal and external differences between graph regions. The partitioning is fast with O(NlogN) complexity. We also discuss ways to deal with missing depth information. We test the approach on different publicly available RGB-D object datasets, such as the Rutgers APC RGB-D dataset and the RGB-D Object Dataset, and compare the results with other existing methods

    Effects of automation on situation awareness in controlling robot teams

    Get PDF
    Declines in situation awareness (SA) often accompany automation. Some of these effects have been characterized as out-of-the-loop, complacency, and automation bias. Increasing autonomy in multi-robot control might be expected to produce similar declines in operators’ SA. In this paper we review a series of experiments in which automation is introduced in controlling robot teams. Automating path planning at a foraging task improved both target detection and localization which is closely tied to SA. Timing data, however, suggested small declines in SA for robot location and pose. Automation of image acquisition, by contrast, led to poorer localization. Findings are discussed and alternative explanations involving shifts in strategy proposed
    corecore