11,926 research outputs found

    A survey on object detection and tracking algorithms

    Get PDF
    Object detection and tracking are important and challenging task in many computer vision applications such as surveillance, vehicle navigation and autonomous robot navigation. Video surveillance in dynamic environment, especially for humans and vehicles, is one of the current challenging research topics in computer vision. It is a key technology to fight against terrorism, crime, public safety and for efficient management of traffic. The work involves designing of efficient video surveillance system in complex environments. In video surveillance, detection of moving objects from a video is important for object detection, target tracking, and behaviour understanding. Detection of moving objects in video streams is the first relevant step of information and background subtraction is a very popular approach for foreground segmentation. In this thesis, we have simulated different background subtraction methods to overcome the problem of illumination variation, background clutter and shadows. Detecting and tracking of human body parts is important in understanding human activities. Intelligent and automated security surveillance systems have become an active research area in recent time due to an increasing demand for such systems in public areas such as airports, underground stations and mass events. In this context, tracking of stationary foreground regions is one of the most critical requirements for surveillance systems based on the tracking of abandoned or stolen objects or parked vehicles

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved
    corecore