193,077 research outputs found

    Object Detection Using the Statistics of Parts

    Full text link

    Learning Mid-Level Representations for Visual Recognition

    Get PDF
    The objective of this thesis is to enhance visual recognition for objects and scenes through the development of novel mid-level representations and appendent learning algorithms. In particular, this work is focusing on category level recognition which is still a very challenging and mainly unsolved task. One crucial component in visual recognition systems is the representation of objects and scenes. However, depending on the representation, suitable learning strategies need to be developed that make it possible to learn new categories automatically from training data. Therefore, the aim of this thesis is to extend low-level representations by mid-level representations and to develop suitable learning mechanisms. A popular kind of mid-level representations are higher order statistics such as self-similarity and co-occurrence statistics. While these descriptors are satisfying the demand for higher-level object representations, they are also exhibiting very large and ever increasing dimensionality. In this thesis a new object representation, based on curvature self-similarity, is suggested that goes beyond the currently popular approximation of objects using straight lines. However, like all descriptors using second order statistics, it also exhibits a high dimensionality. Although improving discriminability, the high dimensionality becomes a critical issue due to lack of generalization ability and curse of dimensionality. Given only a limited amount of training data, even sophisticated learning algorithms such as the popular kernel methods are not able to suppress noisy or superfluous dimensions of such high-dimensional data. Consequently, there is a natural need for feature selection when using present-day informative features and, particularly, curvature self-similarity. We therefore suggest an embedded feature selection method for support vector machines that reduces complexity and improves generalization capability of object models. The proposed curvature self-similarity representation is successfully integrated together with the embedded feature selection in a widely used state-of-the-art object detection framework. The influence of higher order statistics for category level object recognition, is further investigated by learning co-occurrences between foreground and background, to reduce the number of false detections. While the suggested curvature self-similarity descriptor is improving the model for more detailed description of the foreground, higher order statistics are now shown to be also suitable for explicitly modeling the background. This is of particular use for the popular chamfer matching technique, since it is prone to accidental matches in dense clutter. As clutter only interferes with the foreground model contour, we learn where to place the background contours with respect to the foreground object boundary. The co-occurrence of background contours is integrated into a max-margin framework. Thus the suggested approach combines the advantages of accurately detecting object parts via chamfer matching and the robustness of max-margin learning. While chamfer matching is very efficient technique for object detection, parts are only detected based on a simple distance measure. Contrary to that, mid-level parts and patches are explicitly trained to distinguish true positives in the foreground from false positives in the background. Due to the independence of mid-level patches and parts it is possible to train a large number of instance specific part classifiers. This is contrary to the current most powerful discriminative approaches that are typically only feasible for a small number of parts, as they are modeling the spatial dependencies between them. Due to their number, we cannot directly train a powerful classifier to combine all parts. Instead, parts are randomly grouped into fewer, overlapping compositions that are trained using a maximum-margin approach. In contrast to the common rationale of compositional approaches, we do not aim for semantically meaningful ensembles. Rather we seek randomized compositions that are discriminative and generalize over all instances of a category. Compositions are all combined by a non-linear decision function which is completing the powerful hierarchy of discriminative classifiers. In summary, this thesis is improving visual recognition of objects and scenes, by developing novel mid-level representations on top of different kinds of low-level representations. Furthermore, it investigates in the development of suitable learning algorithms, to deal with the new challenges that are arising form the novel object representations presented in this work

    Multi-View Priors for Learning Detectors from Sparse Viewpoint Data

    Full text link
    While the majority of today's object class models provide only 2D bounding boxes, far richer output hypotheses are desirable including viewpoint, fine-grained category, and 3D geometry estimate. However, models trained to provide richer output require larger amounts of training data, preferably well covering the relevant aspects such as viewpoint and fine-grained categories. In this paper, we address this issue from the perspective of transfer learning, and design an object class model that explicitly leverages correlations between visual features. Specifically, our model represents prior distributions over permissible multi-view detectors in a parametric way -- the priors are learned once from training data of a source object class, and can later be used to facilitate the learning of a detector for a target class. As we show in our experiments, this transfer is not only beneficial for detectors based on basic-level category representations, but also enables the robust learning of detectors that represent classes at finer levels of granularity, where training data is typically even scarcer and more unbalanced. As a result, we report largely improved performance in simultaneous 2D object localization and viewpoint estimation on a recent dataset of challenging street scenes.Comment: 13 pages, 7 figures, 4 tables, International Conference on Learning Representations 201

    Action Recognition in Videos: from Motion Capture Labs to the Web

    Full text link
    This paper presents a survey of human action recognition approaches based on visual data recorded from a single video camera. We propose an organizing framework which puts in evidence the evolution of the area, with techniques moving from heavily constrained motion capture scenarios towards more challenging, realistic, "in the wild" videos. The proposed organization is based on the representation used as input for the recognition task, emphasizing the hypothesis assumed and thus, the constraints imposed on the type of video that each technique is able to address. Expliciting the hypothesis and constraints makes the framework particularly useful to select a method, given an application. Another advantage of the proposed organization is that it allows categorizing newest approaches seamlessly with traditional ones, while providing an insightful perspective of the evolution of the action recognition task up to now. That perspective is the basis for the discussion in the end of the paper, where we also present the main open issues in the area.Comment: Preprint submitted to CVIU, survey paper, 46 pages, 2 figures, 4 table
    corecore