33,777 research outputs found

    Small Object Detection Based on Two-Stage Calculation Transformer

    Get PDF
    Despite the current small object detection task has achieved significant improvements, it still suffers from some problems. For example, it is a challenge to extract small object features because of little information in the scene of small objects, which may lose the original feature information of small object, resulting in poor detection results. To address this problem, this paper proposes a two-stage calculation Transformer (TCT) based small object detection network. Firstly, a two-stage calculation Transformer is embedded in the backbone feature extraction network for feature enhancement. Based on the traditional Transformer values computation, multiple 1D dilated convolutional layer branches with different feature fusions are utilized to implement global self-attention for the purpose of improving the feature representation and information interaction. Secondly, this paper proposes an effective residual connection module to improve the low-efficiency convolution and activation of the current CSPLayer, which helps to advance the information flow and learn more rich contextual details. Finally, this paper proposes a feature fusion and refinement module for fusing multi-scale features and improving the target feature representation capability. Quantitative and qualitative experiments on PASCAL VOC2007+2012 dataset, COCO2017 dataset and TinyPerson dataset show that the proposed algorithm has better ability of target feature extraction and higher detection accuracy for small target detection, compared with YOLOX

    Feature-Fused SSD: Fast Detection for Small Objects

    Full text link
    Small objects detection is a challenging task in computer vision due to its limited resolution and information. In order to solve this problem, the majority of existing methods sacrifice speed for improvement in accuracy. In this paper, we aim to detect small objects at a fast speed, using the best object detector Single Shot Multibox Detector (SSD) with respect to accuracy-vs-speed trade-off as base architecture. We propose a multi-level feature fusion method for introducing contextual information in SSD, in order to improve the accuracy for small objects. In detailed fusion operation, we design two feature fusion modules, concatenation module and element-sum module, different in the way of adding contextual information. Experimental results show that these two fusion modules obtain higher mAP on PASCALVOC2007 than baseline SSD by 1.6 and 1.7 points respectively, especially with 2-3 points improvement on some smallobjects categories. The testing speed of them is 43 and 40 FPS respectively, superior to the state of the art Deconvolutional single shot detector (DSSD) by 29.4 and 26.4 FPS. Code is available at https://github.com/wnzhyee/Feature-Fused-SSD. Keywords: small object detection, feature fusion, real-time, single shot multi-box detectorComment: Artificial Intelligence;8 pages,8 figure

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    • …
    corecore