1,439 research outputs found

    Object Closure and Manipulation by Multiple Cooperating Mobile Robots

    Get PDF
    We address the manipulation of planar objects by multiple cooperating mobile robots using the concept of Object Closure. In contrast to Form or Force Closure, Object Closure is a condition under which the object is trapped so that there is no feasible path for the object from the given position to any position that is beyond a specified threshold distance. Once Object Closure is achieved, the robots can cooperatively drag or flow the trapped object to the desired goal. In this paper, we define object closure and develop a set of decentralized algorithms that allow the robots to achieve and maintain object closure. We show how simple, first-order, potential field based controllers can be used to implement multirobot manipulation tasks

    Control of Cooperating Mobile Manipulators

    Get PDF
    We describe a framework and control algorithms for coordinating multiple mobile robots with manipulators focusing on tasks that require grasping, manipulation and transporting large and possibly flexible objects without special purpose fixtures. Because each robot has an independent controller and is autonomous, the coordination and synergy are realized through sensing and communication. The robots can cooperatively transport objects and march in a tightly controlled formation, while also having the capability to navigate autonomously. We describe the key aspects of the overall hierarchy and the basic algorithms, with specific applications to our experimental testbed consisting of three robots. We describe results from many experiments that demonstrate the ability of the system to carry flexible boards and large boxes as well as the system’s robustness to alignment and odometry errors

    Swarm Robotics: An Extensive Research Review

    Get PDF

    Control of Cooperating Mobile Manipulators

    Get PDF
    We describe a framework and control algorithms for coordinating multiple mobile robots with manipulators focusing on tasks that require grasping, manipulation and transporting large and possibly flexible objects without special purpose fixtures. Because each robot has an independent controller and is autonomous, the coordination and synergy are realized through sensing and communication. The robots can cooperatively transport objects and march in a tightly controlled formation, while also having the capability to navigate autonomously. We describe the key aspects of the overall hierarchy and the basic algorithms, with specific applications to our experimental testbed consisting of three robots. We describe results from many experiments that demonstrate the ability of the system to carry flexible boards and large boxes as well as the system’s robustness to alignment and odometry errors

    An approach towards decentralized control of cooperating non-autonomous multiple robots

    Get PDF

    An approach towards decentralized control of cooperating non-autonomous multiple robots

    Get PDF

    Cooperative Object Transport in Multi-robot Systems:A Review of the State-of-the-Art

    Get PDF
    In recent years, there has been a growing interest in designing multi-robot systems (hereafter MRSs) to provide cost effective, fault-tolerant and reliable solutions to a variety of automated applications. Here, we review recent advancements in MRSs specifically designed for cooperative object transport, which requires the members of MRSs to coordinate their actions to transport objects from a starting position to a final destination. To achieve cooperative object transport, a wide range of transport, coordination and control strategies have been proposed. Our goal is to provide a comprehensive summary for this relatively heterogeneous and fast-growing body of scientific literature. While distilling the information, we purposefully avoid using hierarchical dichotomies, which have been traditionally used in the field of MRSs. Instead, we employ a coarse-grain approach by classifying each study based on the transport strategy used; pushing-only, grasping and caging. We identify key design constraints that may be shared among these studies despite considerable differences in their design methods. In the end, we discuss several open challenges and possible directions for future work to improve the performance of the current MRSs. Overall, we hope to increase the visibility and accessibility of the excellent studies in the field and provide a framework that helps the reader to navigate through them more effectivelypublishersversionPeer reviewe

    Slip compensated manipulation of an object with cooperating multiple robots

    Get PDF

    Linear Time-Varying MPC for Nonprehensile Object Manipulation with a Nonholonomic Mobile Robot

    Get PDF
    This paper proposes a technique to manipulate an object with a nonholonomic mobile robot by pushing, which is a nonprehensile manipulation motion primitive. Such a primitive involves unilateral constraints associated with the friction between the robot and the manipulated object. Violating this constraint produces the slippage of the object during the manipulation, preventing the correct achievement of the task. A linear time-varying model predictive control is designed to include the unilateral constraint within the control action properly. The approach is verified in a dynamic simulation environment through a Pioneer 3-DX wheeled robot executing the pushing manipulation of a package
    • …
    corecore