538 research outputs found

    Kernel combination via debiased object correspondence analysis

    Get PDF
    This paper addresses the problem of combining multi-modal kernels in situations in which object correspondence information is unavailable between modalities, for instance, where missing feature values exist, or when using proprietary databases in multi-modal biometrics. The method thus seeks to recover inter-modality kernel information so as to enable classifiers to be built within a composite embedding space. This is achieved through a principled group-wise identification of objects within differing modal kernel matrices in order to form a composite kernel matrix that retains the full freedom of linear kernel combination existing in multiple kernel learning. The underlying principle is derived from the notion of tomographic reconstruction, which has been applied successfully in conventional pattern recognition. In setting out this method, we aim to improve upon object-correspondence insensitive methods, such as kernel matrix combination via the Cartesian product of object sets to which the method defaults in the case of no discovered pairwise object identifications. We benchmark the method against the augmented kernel method, an order-insensitive approach derived from the direct sum of constituent kernel matrices, and also against straightforward additive kernel combination where the correspondence information is given a priori. We find that the proposed method gives rise to substantial performance improvements

    Kernel methods in genomics and computational biology

    Full text link
    Support vector machines and kernel methods are increasingly popular in genomics and computational biology, due to their good performance in real-world applications and strong modularity that makes them suitable to a wide range of problems, from the classification of tumors to the automatic annotation of proteins. Their ability to work in high dimension, to process non-vectorial data, and the natural framework they provide to integrate heterogeneous data are particularly relevant to various problems arising in computational biology. In this chapter we survey some of the most prominent applications published so far, highlighting the particular developments in kernel methods triggered by problems in biology, and mention a few promising research directions likely to expand in the future

    Kernel combination via debiased object correspondence analysis

    Get PDF
    This paper addresses the problem of combining multi-modal kernels in situations in which object correspondence information is unavailable between modalities, for instance, where missing feature values exist, or when using proprietary databases in multi-modal biometrics. The method thus seeks to recover inter-modality kernel information so as to enable classifiers to be built within a composite embedding space. This is achieved through a principled group-wise identification of objects within differing modal kernel matrices in order to form a composite kernel matrix that retains the full freedom of linear kernel combination existing in multiple kernel learning. The underlying principle is derived from the notion of tomographic reconstruction, which has been applied successfully in conventional pattern recognition. In setting out this method, we aim to improve upon object-correspondence insensitive methods, such as kernel matrix combination via the Cartesian product of object sets to which the method defaults in the case of no discovered pairwise object identifications. We benchmark the method against the augmented kernel method, an order-insensitive approach derived from the direct sum of constituent kernel matrices, and also against straightforward additive kernel combination where the correspondence information is given a priori. We find that the proposed method gives rise to substantial performance improvements

    Positive Definite Kernels in Machine Learning

    Full text link
    This survey is an introduction to positive definite kernels and the set of methods they have inspired in the machine learning literature, namely kernel methods. We first discuss some properties of positive definite kernels as well as reproducing kernel Hibert spaces, the natural extension of the set of functions {k(x,⋅),x∈X}\{k(x,\cdot),x\in\mathcal{X}\} associated with a kernel kk defined on a space X\mathcal{X}. We discuss at length the construction of kernel functions that take advantage of well-known statistical models. We provide an overview of numerous data-analysis methods which take advantage of reproducing kernel Hilbert spaces and discuss the idea of combining several kernels to improve the performance on certain tasks. We also provide a short cookbook of different kernels which are particularly useful for certain data-types such as images, graphs or speech segments.Comment: draft. corrected a typo in figure

    On the Design and Analysis of Multiple View Descriptors

    Full text link
    We propose an extension of popular descriptors based on gradient orientation histograms (HOG, computed in a single image) to multiple views. It hinges on interpreting HOG as a conditional density in the space of sampled images, where the effects of nuisance factors such as viewpoint and illumination are marginalized. However, such marginalization is performed with respect to a very coarse approximation of the underlying distribution. Our extension leverages on the fact that multiple views of the same scene allow separating intrinsic from nuisance variability, and thus afford better marginalization of the latter. The result is a descriptor that has the same complexity of single-view HOG, and can be compared in the same manner, but exploits multiple views to better trade off insensitivity to nuisance variability with specificity to intrinsic variability. We also introduce a novel multi-view wide-baseline matching dataset, consisting of a mixture of real and synthetic objects with ground truthed camera motion and dense three-dimensional geometry

    Data-Driven Representation Learning in Multimodal Feature Fusion

    Get PDF
    abstract: Modern machine learning systems leverage data and features from multiple modalities to gain more predictive power. In most scenarios, the modalities are vastly different and the acquired data are heterogeneous in nature. Consequently, building highly effective fusion algorithms is at the core to achieve improved model robustness and inferencing performance. This dissertation focuses on the representation learning approaches as the fusion strategy. Specifically, the objective is to learn the shared latent representation which jointly exploit the structural information encoded in all modalities, such that a straightforward learning model can be adopted to obtain the prediction. We first consider sensor fusion, a typical multimodal fusion problem critical to building a pervasive computing platform. A systematic fusion technique is described to support both multiple sensors and descriptors for activity recognition. Targeted to learn the optimal combination of kernels, Multiple Kernel Learning (MKL) algorithms have been successfully applied to numerous fusion problems in computer vision etc. Utilizing the MKL formulation, next we describe an auto-context algorithm for learning image context via the fusion with low-level descriptors. Furthermore, a principled fusion algorithm using deep learning to optimize kernel machines is developed. By bridging deep architectures with kernel optimization, this approach leverages the benefits of both paradigms and is applied to a wide variety of fusion problems. In many real-world applications, the modalities exhibit highly specific data structures, such as time sequences and graphs, and consequently, special design of the learning architecture is needed. In order to improve the temporal modeling for multivariate sequences, we developed two architectures centered around attention models. A novel clinical time series analysis model is proposed for several critical problems in healthcare. Another model coupled with triplet ranking loss as metric learning framework is described to better solve speaker diarization. Compared to state-of-the-art recurrent networks, these attention-based multivariate analysis tools achieve improved performance while having a lower computational complexity. Finally, in order to perform community detection on multilayer graphs, a fusion algorithm is described to derive node embedding from word embedding techniques and also exploit the complementary relational information contained in each layer of the graph.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    A kernel-based framework for medical big-data analytics

    Get PDF
    The recent trend towards standardization of Electronic Health Records (EHRs) represents a significant opportunity and challenge for medical big-data analytics. The challenge typically arises from the nature of the data which may be heterogeneous, sparse, very high-dimensional, incomplete and inaccurate. Of these, standard pattern recognition methods can typically address issues of high-dimensionality, sparsity and inaccuracy. The remaining issues of incompleteness and heterogeneity however are problematic; data can be as diverse as handwritten notes, blood-pressure readings and MR scans, and typically very little of this data will be co-present for each patient at any given time interval. We therefore advocate a kernel-based framework as being most appropriate for handling these issues, using the neutral point substitution method to accommodate missing inter-modal data. For pre-processing of image-based MR data we advocate a Deep Learning solution for contextual areal segmentation, with edit-distance based kernel measurement then used to characterize relevant morphology

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Kernel Functions for Graph Classification

    Get PDF
    Graphs are information-rich structures, but their complexity makes them difficult to analyze. Given their broad and powerful representation capacity, the classification of graphs has become an intense area of research. Many established classifiers represent objects with vectors of explicit features. When the number of features grows, however, these vector representations suffer from typical problems of high dimensionality such as overfitting and high computation time. This work instead focuses on using kernel functions to map graphs into implicity defined spaces that avoid the difficulties of vector representations. The introduction of kernel classifiers has kindled great interest in kernel functions for graph data. By using kernels the problem of graph classification changes from finding a good classifier to finding a good kernel function. This work explores several novel uses of kernel functions for graph classification. The first technique is the use of structure based features to add structural information to the kernel function. A strength of this approach is the ability to identify specific structure features that contribute significantly to the classification process. Discriminative structures can then be passed off to domain-specific researchers for additional analysis. The next approach is the use of wavelet functions to represent graph topology as simple real-valued features. This approach achieves order-of-magnitude decreases in kernel computation time by eliminating costly topological comparisons, while retaining competitive classification accuracy. Finally, this work examines the use of even simpler graph representations and their utility for classification. The models produced from the kernel functions presented here yield excellent performance with respect to both efficiency and accuracy, as demonstrated in a variety of experimental studies
    • …
    corecore