1,821 research outputs found

    TOWARDS THE GROUNDING OF ABSTRACT CATEGORIES IN COGNITIVE ROBOTS

    Get PDF
    The grounding of language in humanoid robots is a fundamental problem, especially in social scenarios which involve the interaction of robots with human beings. Indeed, natural language represents the most natural interface for humans to interact and exchange information about concrete entities like KNIFE, HAMMER and abstract concepts such as MAKE, USE. This research domain is very important not only for the advances that it can produce in the design of human-robot communication systems, but also for the implication that it can have on cognitive science. Abstract words are used in daily conversations among people to describe events and situations that occur in the environment. Many scholars have suggested that the distinction between concrete and abstract words is a continuum according to which all entities can be varied in their level of abstractness. The work presented herein aimed to ground abstract concepts, similarly to concrete ones, in perception and action systems. This permitted to investigate how different behavioural and cognitive capabilities can be integrated in a humanoid robot in order to bootstrap the development of higher-order skills such as the acquisition of abstract words. To this end, three neuro-robotics models were implemented. The first neuro-robotics experiment consisted in training a humanoid robot to perform a set of motor primitives (e.g. PUSH, PULL, etc.) that hierarchically combined led to the acquisition of higher-order words (e.g. ACCEPT, REJECT). The implementation of this model, based on a feed-forward artificial neural networks, permitted the assessment of the training methodology adopted for the grounding of language in humanoid robots. In the second experiment, the architecture used for carrying out the first study was reimplemented employing recurrent artificial neural networks that enabled the temporal specification of the action primitives to be executed by the robot. This permitted to increase the combinations of actions that can be taught to the robot for the generation of more complex movements. For the third experiment, a model based on recurrent neural networks that integrated multi-modal inputs (i.e. language, vision and proprioception) was implemented for the grounding of abstract action words (e.g. USE, MAKE). Abstract representations of actions ("one-hot" encoding) used in the other two experiments, were replaced with the joints values recorded from the iCub robot sensors. Experimental results showed that motor primitives have different activation patterns according to the action's sequence in which they are embedded. Furthermore, the performed simulations suggested that the acquisition of concepts related to abstract action words requires the reactivation of similar internal representations activated during the acquisition of the basic concepts, directly grounded in perceptual and sensorimotor knowledge, contained in the hierarchical structure of the words used to ground the abstract action words.This study was financed by the EU project RobotDoC (235065) from the Seventh Framework Programme (FP7), Marie Curie Actions Initial Training Network

    Explainable Deep Learning

    Get PDF
    Il grande successo che il Deep Learning ha ottenuto in ambiti strategici per la nostra società quali l'industria, la difesa, la medicina etc., ha portanto sempre più realtà a investire ed esplorare l'utilizzo di questa tecnologia. Ormai si possono trovare algoritmi di Machine Learning e Deep Learning quasi in ogni ambito della nostra vita. Dai telefoni, agli elettrodomestici intelligenti fino ai veicoli che guidiamo. Quindi si può dire che questa tecnologia pervarsiva è ormai a contatto con le nostre vite e quindi dobbiamo confrontarci con essa. Da questo nasce l’eXplainable Artificial Intelligence o XAI, uno degli ambiti di ricerca che vanno per la maggiore al giorno d'oggi in ambito di Deep Learning e di Intelligenza Artificiale. Il concetto alla base di questo filone di ricerca è quello di rendere e/o progettare i nuovi algoritmi di Deep Learning in modo che siano affidabili, interpretabili e comprensibili all'uomo. Questa necessità è dovuta proprio al fatto che le reti neurali, modello matematico che sta alla base del Deep Learning, agiscono come una scatola nera, rendendo incomprensibile all'uomo il ragionamento interno che compiono per giungere ad una decisione. Dato che stiamo delegando a questi modelli matematici decisioni sempre più importanti, integrandole nei processi più delicati della nostra società quali, ad esempio, la diagnosi medica, la guida autonoma o i processi di legge, è molto importante riuscire a comprendere le motivazioni che portano questi modelli a produrre determinati risultati. Il lavoro presentato in questa tesi consiste proprio nello studio e nella sperimentazione di algoritmi di Deep Learning integrati con tecniche di Intelligenza Artificiale simbolica. Questa integrazione ha un duplice scopo: rendere i modelli più potenti, consentendogli di compiere ragionamenti o vincolandone il comportamento in situazioni complesse, e renderli interpretabili. La tesi affronta due macro argomenti: le spiegazioni ottenute grazie all'integrazione neuro-simbolica e lo sfruttamento delle spiegazione per rendere gli algoritmi di Deep Learning più capaci o intelligenti. Il primo macro argomento si concentra maggiormente sui lavori svolti nello sperimentare l'integrazione di algoritmi simbolici con le reti neurali. Un approccio è stato quelli di creare un sistema per guidare gli addestramenti delle reti stesse in modo da trovare la migliore combinazione di iper-parametri per automatizzare la progettazione stessa di queste reti. Questo è fatto tramite l'integrazione di reti neurali con la Programmazione Logica Probabilistica (PLP) che consente di sfruttare delle regole probabilistiche indotte dal comportamento delle reti durante la fase di addestramento o ereditate dall'esperienza maturata dagli esperti del settore. Queste regole si innescano allo scatenarsi di un problema che il sistema rileva durate l'addestramento della rete. Questo ci consente di ottenere una spiegazione di cosa è stato fatto per migliorare l'addestramento una volta identificato un determinato problema. Un secondo approccio è stato quello di far cooperare sistemi logico-probabilistici con reti neurali per la diagnosi medica da fonti di dati eterogenee. La seconda tematica affrontata in questa tesi tratta lo sfruttamento delle spiegazioni che possiamo ottenere dalle rete neurali. In particolare, queste spiegazioni sono usate per creare moduli di attenzione che aiutano a vincolare o a guidare le reti neurali portandone ad avere prestazioni migliorate. Tutti i lavori sviluppati durante il dottorato e descritti in questa tesi hanno portato alle pubblicazioni elencate nel Capitolo 14.2.The great success that Machine and Deep Learning has achieved in areas that are strategic for our society such as industry, defence, medicine, etc., has led more and more realities to invest and explore the use of this technology. Machine Learning and Deep Learning algorithms and learned models can now be found in almost every area of our lives. From phones to smart home appliances, to the cars we drive. So it can be said that this pervasive technology is now in touch with our lives, and therefore we have to deal with it. This is why eXplainable Artificial Intelligence or XAI was born, one of the research trends that are currently in vogue in the field of Deep Learning and Artificial Intelligence. The idea behind this line of research is to make and/or design the new Deep Learning algorithms so that they are interpretable and comprehensible to humans. This necessity is due precisely to the fact that neural networks, the mathematical model underlying Deep Learning, act like a black box, making the internal reasoning they carry out to reach a decision incomprehensible and untrustable to humans. As we are delegating more and more important decisions to these mathematical models, it is very important to be able to understand the motivations that lead these models to make certain decisions. This is because we have integrated them into the most delicate processes of our society, such as medical diagnosis, autonomous driving or legal processes. The work presented in this thesis consists in studying and testing Deep Learning algorithms integrated with symbolic Artificial Intelligence techniques. This integration has a twofold purpose: to make the models more powerful, enabling them to carry out reasoning or constraining their behaviour in complex situations, and to make them interpretable. The thesis focuses on two macro topics: the explanations obtained through neuro-symbolic integration and the exploitation of explanations to make the Deep Learning algorithms more capable or intelligent. The neuro-symbolic integration was addressed twice, by experimenting with the integration of symbolic algorithms with neural networks. A first approach was to create a system to guide the training of the networks themselves in order to find the best combination of hyper-parameters to automate the design of these networks. This is done by integrating neural networks with Probabilistic Logic Programming (PLP). This integration makes it possible to exploit probabilistic rules tuned by the behaviour of the networks during the training phase or inherited from the experience of experts in the field. These rules are triggered when a problem occurs during network training. This generates an explanation of what was done to improve the training once a particular issue was identified. A second approach was to make probabilistic logic systems cooperate with neural networks for medical diagnosis on heterogeneous data sources. The second topic addressed in this thesis concerns the exploitation of explanations. In particular, the explanations one can obtain from neural networks are used in order to create attention modules that help in constraining and improving the performance of neural networks. All works developed during the PhD and described in this thesis have led to the publications listed in Chapter 14.2

    Goal-directed cross-system interactions in brain and deep learning networks

    Get PDF
    Deep neural networks (DNN) have recently emerged as promising models for the mammalian ventral visual stream. However, how ventral stream adapts to various goal-directed influences and coordinates with higher-level brain regions during learning remain poorly understood. By incorporating top-down influences involving attentional cues, linguistic labels and novel category learning into DNN models, the thesis offers an explanation for how the tasks we do shape representations across levels in models and related brain regions including ventral visual stream, HPC and ventromedial prefrontal cortex (vmPFC) via a theoretical modelling approach. The thesis include three main contributions. In the first contribution, I developed a goal-directed attention mechanism which extends general-purpose DNN with the ability to reconfigure itself to better suit the current task goal, much like PFC modulates activity along the ventral stream. In the second contribution, I uncovered how linguistic labelling shapes semantic representation by amending existing DNN to both predict the meaning and the categorical label of an object. Supported by simulation results involving fine-grained and coarse-grained labels, I concluded that differences in label use, whether across languages or levels of expertise, manifest in differences in the semantic representations that support label discrimination. In the third contribution, I aimed to better understand cross-brain mechanisms in a novel learning task by combining insights on labelling and attention obtained from preceding efforts. Integrating DNN with a novel clustering model built off from SUSTAIN, the proposed account captures human category learning behaviour and the underlying neural mechanisms across multiple interacting brain areas involving HPC, vmPFC and the ventral visual stream. By extending models of the ventral stream to incorporate goal-directed cross-system coordination, I hope the thesis can inform understanding of the neurobiology supporting object recognition and category learning which in turn help us advance designs of deep learning models

    What Is Cognitive Psychology?

    Get PDF
    What Is Cognitive Psychology? identifies the theoretical foundations of cognitive psychology—foundations which have received very little attention in modern textbooks. Beginning with the basics of information processing, Michael R. W. Dawson explores what experimental psychologists infer about these processes and considers what scientific explanations are required when we assume cognition is rule-governed symbol manipulation. From these foundations, psychologists can identify the architecture of cognition and better understand its role in debates about its true nature. This volume offers a deeper understanding of cognitive psychology and presents ideas for integrating traditional cognitive psychology with more modern fields like cognitive neuroscience.Publishe

    Towards the Development of a Model of Vision: An Investigation into the Architectures and Mechanisms of Visual Perception

    Get PDF
    A conceptual model of visual perception has been developed using a multidisciplinary approach which combines both top-down and bottom-up descriptions of vision. Top-down psychological theories of visual perception have been investigated resulting in the development of a theory of perception which combines the best of existing accounts. Perception is defined in terms of a combination of "data driven" and "concept driven" explanations. Bottom-up neurophysiological descriptions have also been investigated to provide possible descriptions of structure and function for the development of a conceptual model based upon the theory. An attempt is made to provide a "complete" account of visual perception through the development of both the theory and conceptual model. Further it is envisaged that the development of such a model will provide new insight into the development of artificial vision systems and new algorithms for perceptual function in such systems

    Advancing Perception in Artificial Intelligence through Principles of Cognitive Science

    Full text link
    Although artificial intelligence (AI) has achieved many feats at a rapid pace, there still exist open problems and fundamental shortcomings related to performance and resource efficiency. Since AI researchers benchmark a significant proportion of performance standards through human intelligence, cognitive sciences-inspired AI is a promising domain of research. Studying cognitive science can provide a fresh perspective to building fundamental blocks in AI research, which can lead to improved performance and efficiency. In this review paper, we focus on the cognitive functions of perception, which is the process of taking signals from one's surroundings as input, and processing them to understand the environment. Particularly, we study and compare its various processes through the lens of both cognitive sciences and AI. Through this study, we review all current major theories from various sub-disciplines of cognitive science (specifically neuroscience, psychology and linguistics), and draw parallels with theories and techniques from current practices in AI. We, hence, present a detailed collection of methods in AI for researchers to build AI systems inspired by cognitive science. Further, through the process of reviewing the state of cognitive-inspired AI, we point out many gaps in the current state of AI (with respect to the performance of the human brain), and hence present potential directions for researchers to develop better perception systems in AI.Comment: Summary: a detailed review of the current state of perception models through the lens of cognitive A
    • …
    corecore