942 research outputs found

    Active Perception by Interaction with Other Agents in a Predictive Coding Framework: Application to Internet of Things Environment

    Get PDF
    Predicting the state of an agent\u27s partially-observable environment is a problem of interest in many domains. Typically in the real world, the environment consists of multiple agents, not necessarily working towards a common goal. Though the goal and sensory observation for each agent is unique, one agent might have acquired some knowledge that may benefit the other. In essence, the knowledge base regarding the environment is distributed among the agents. An agent can sample this distributed knowledge base by communicating with other agents. Since an agent is not storing the entire knowledge base, its model can be small and its inference can be efficient and fault-tolerant. However, the agent needs to learn -- when, with whom and what -- to communicate (in general interact) under different situations.This dissertation presents an agent model that actively and selectively communicates with other agents to predict the state of its environment efficiently. Communication is a challenge when the internal models of other agents is unknown and unobservable. The proposed agent learns communication policies as mappings from its belief state to when, with whom and what to communicate. The policies are learned using predictive coding in an online manner, without any reinforcement. The proposed agent model is evaluated on widely-studied applications, such as human activity recognition from multimodal, multisource and heterogeneous sensor data, and transferring knowledge across sensor networks. In the applications, either each sensor or each sensor network is assumed to be monitored by an agent. The recognition accuracy on benchmark datasets is comparable to the state-of-the-art, even though our model has significantly fewer parameters and infers the state in a localized manner. The learned policy reduces number of communications. The agent is tolerant to communication failures and can recognize the reliability of each agent from its communication messages. To the best of our knowledge, this is the first work on learning communication policies by an agent for predicting the state of its environment

    Three decades of statistical pattern recognition paradigm for SHM of bridges

    Get PDF
    This is the author accepted manuscript. The final version is available from SAGE Publications via the DOI in this recordBridges play a crucial role in modern societies, regardless of their culture, geographical location, or economic development. The safest, economical, and most resilient bridges are those that are well managed and maintained. In the last three decades, structural health monitoring (SHM) has been a promising tool in management activities of bridges as potentially it permits one to perform condition assessment to reduce uncertainty in the planning and designing of maintenance activities as well as to increase the service performance and safety of operation. The general idea has been the transformation of massive data obtained from monitoring systems and numerical models into meaningful information. To deal with large amounts of data and perform the damage identification automatically, SHM has been cast in the context of the statistical pattern recognition (SPR) paradigm, where machine learning plays an important role. Meanwhile, recent technologies have unveiled alternative sensing opportunities and new perspectives to manage and observe the response of bridges, but it is widely recognized that bridge SHM is not yet fully capable of producing reliable global information on the presence of damage. While there have been multiple review studies published on SHM and vibration-based structural damage detection for wider scopes, there have not been so many reviews on SHM of bridges in the context of the SPR paradigm. Besides, some of those reviews become obsolete quite fast, and they are usually biased towards applications falling outside of bridge engineering. Therefore, the main goal of this article is to summarize the concept of SHM and point out key developments in research and applications of the SPR paradigm observed in bridges in the last three decades, including developments in sensing technology and data analysis, and to identify current and future trends to promote more coordinated and interdisciplinary research in the SHM of bridges

    Multi-view Subspace Learning for Large-Scale Multi-Modal Data Analysis

    Get PDF
    Dimensionality reduction methods play a big role within the modern machine learning techniques, and subspace learning is one of the common approaches to it. Although various methods have been proposed over the past years, many of them suffer from limitations related to the unimodality assumptions on the data and low speed in the cases of high-dimensional data (in linear formulations) or large datasets (in kernel-based formulations). In this work, several methods for overcoming these limitations are proposed. In this thesis, the problem of the large-scale multi-modal data analysis for single- and multi-view data is discussed, and several extensions for Subclass Discriminant Analysis (SDA) are proposed. First, a Spectral Regression Subclass Discriminant Analysis method relying on the Graph Embedding-based formulation of SDA is proposed as a way to reduce the training time, and it is shown how the solution can be obtained efficiently, therefore reducing the computational requirements. Secondly, a novel multi-view formulation for Subclass Discriminant Analysis is proposed, allowing to extend it to data coming from multiple views. Besides, a speed-up approach for the multi-view formulation that allows reducing the computational requirements of the method is proposed. Linear and nonlinear kernel-based formulations are proposed for all the extensions. Experiments are performed on nine single-view and nine multi-view datasets and the accuracy and speed of the proposed extensions are evaluated. Experimentally it is shown that the proposed approaches result in a significant reduction of the training time while providing competitive performance, as compared to other subspace-learning based methods

    Data-driven robotic manipulation of cloth-like deformable objects : the present, challenges and future prospects

    Get PDF
    Manipulating cloth-like deformable objects (CDOs) is a long-standing problem in the robotics community. CDOs are flexible (non-rigid) objects that do not show a detectable level of compression strength while two points on the article are pushed towards each other and include objects such as ropes (1D), fabrics (2D) and bags (3D). In general, CDOs’ many degrees of freedom (DoF) introduce severe self-occlusion and complex state–action dynamics as significant obstacles to perception and manipulation systems. These challenges exacerbate existing issues of modern robotic control methods such as imitation learning (IL) and reinforcement learning (RL). This review focuses on the application details of data-driven control methods on four major task families in this domain: cloth shaping, knot tying/untying, dressing and bag manipulation. Furthermore, we identify specific inductive biases in these four domains that present challenges for more general IL and RL algorithms.Publisher PDFPeer reviewe
    • …
    corecore