1,292 research outputs found

    NLSC: Unrestricted Natural Language-based Service Composition through Sentence Embeddings

    Full text link
    Current approaches for service composition (assemblies of atomic services) require developers to use: (a) domain-specific semantics to formalize services that restrict the vocabulary for their descriptions, and (b) translation mechanisms for service retrieval to convert unstructured user requests to strongly-typed semantic representations. In our work, we argue that effort to developing service descriptions, request translations, and matching mechanisms could be reduced using unrestricted natural language; allowing both: (1) end-users to intuitively express their needs using natural language, and (2) service developers to develop services without relying on syntactic/semantic description languages. Although there are some natural language-based service composition approaches, they restrict service retrieval to syntactic/semantic matching. With recent developments in Machine learning and Natural Language Processing, we motivate the use of Sentence Embeddings by leveraging richer semantic representations of sentences for service description, matching and retrieval. Experimental results show that service composition development effort may be reduced by more than 44\% while keeping a high precision/recall when matching high-level user requests with low-level service method invocations.Comment: This paper will appear on SCC'19 (IEEE International Conference on Services Computing) on July 1

    Communication Architecture for Tracking and Interoperable Services at Hospitals: A Real Deployment Experience

    Get PDF
    Any new hospital communication architecture has to support existing services, but at the same time new added features should not affect normal tasks. This article deals with issues regarding old and new systems’ interoperability, as well as the effect the human factor has in a deployed architecture. It also presents valuable information, which is a product of a real scenario. Tracking services are also tested in order to monitor and administer several medical resources

    The OCarePlatform : a context-aware system to support independent living

    Get PDF
    Background: Currently, healthcare services, such as institutional care facilities, are burdened with an increasing number of elderly people and individuals with chronic illnesses and a decreasing number of competent caregivers. Objectives: To relieve the burden on healthcare services, independent living at home could be facilitated, by offering individuals and their (in)formal caregivers support in their daily care and needs. With the rise of pervasive healthcare, new information technology solutions can assist elderly people ("residents") and their caregivers to allow residents to live independently for as long as possible. Methods: To this end, the OCarePlatform system was designed. This semantic, data-driven and cloud based back-end system facilitates independent living by offering information and knowledge-based services to the resident and his/her (in)formal caregivers. Data and context information are gathered to realize context-aware and personalized services and to support residents in meeting their daily needs. This body of data, originating from heterogeneous data and information sources, is sent to personalized services, where is fused, thus creating an overview of the resident's current situation. Results: The architecture of the OCarePlatform is proposed, which is based on a service-oriented approach, together with its different components and their interactions. The implementation details are presented, together with a running example. A scalability and performance study of the OCarePlatform was performed. The results indicate that the OCarePlatform is able to support a realistic working environment and respond to a trigger in less than 5 seconds. The system is highly dependent on the allocated memory. Conclusion: The data-driven character of the OCarePlatform facilitates easy plug-in of new functionality, enabling the design of personalized, context-aware services. The OCarePlatform leads to better support for elderly people and individuals with chronic illnesses, who live independently. (C) 2016 Elsevier Ireland Ltd. All rights reserved

    Modeling, Simulation and Emulation of Intelligent Domotic Environments

    Get PDF
    Intelligent Domotic Environments are a promising approach, based on semantic models and commercially off-the-shelf domotic technologies, to realize new intelligent buildings, but such complexity requires innovative design methodologies and tools for ensuring correctness. Suitable simulation and emulation approaches and tools must be adopted to allow designers to experiment with their ideas and to incrementally verify designed policies in a scenario where the environment is partly emulated and partly composed of real devices. This paper describes a framework, which exploits UML2.0 state diagrams for automatic generation of device simulators from ontology-based descriptions of domotic environments. The DogSim simulator may simulate a complete building automation system in software, or may be integrated in the Dog Gateway, allowing partial simulation of virtual devices alongside with real devices. Experiments on a real home show that the approach is feasible and can easily address both simulation and emulation requirement

    Rewiring strategies for changing environments

    Get PDF
    A typical pervasive application executes in a changing environment: people, computing resources, software services and network connections come and go continuously. A robust pervasive application needs adapt to this changing context as long as there is an appropriate rewiring strategy that guarantees correct behavior. We combine the MERODE modeling methodology with the ReWiRe framework for creating interactive pervasive applications that can cope with changing environments. The core of our approach is a consistent environment model, which is essential to create (re)configurable context-aware pervasive applications. We aggregate different ontologies that provide the required semantics to describe almost any target environment. We present a case study that shows a interactive pervasive application for media access that incorporates parental control on media content and can migrate between devices. The application builds upon models of the run-time environment represented as system states for dedicated rewiring strategies

    Towards a Tool-based Development Methodology for Pervasive Computing Applications

    Get PDF
    Despite much progress, developing a pervasive computing application remains a challenge because of a lack of conceptual frameworks and supporting tools. This challenge involves coping with heterogeneous devices, overcoming the intricacies of distributed systems technologies, working out an architecture for the application, encoding it in a program, writing specific code to test the application, and finally deploying it. This paper presents a design language and a tool suite covering the development life-cycle of a pervasive computing application. The design language allows to define a taxonomy of area-specific building-blocks, abstracting over their heterogeneity. This language also includes a layer to define the architecture of an application, following an architectural pattern commonly used in the pervasive computing domain. Our underlying methodology assigns roles to the stakeholders, providing separation of concerns. Our tool suite includes a compiler that takes design artifacts written in our language as input and generates a programming framework that supports the subsequent development stages, namely implementation, testing, and deployment. Our methodology has been applied on a wide spectrum of areas. Based on these experiments, we assess our approach through three criteria: expressiveness, usability, and productivity

    SDN applications - The intent-based Northbound Interface realisation for extended applications

    Full text link
    © 2016 IEEE. The Northbound Interface (NBI) plays a crucial role in promoting the adoption of SDN as it allows developers the freedom of developing their revenue-generating applications without being affected and constrained by the complexities of the underlying networks. To do so the NBI has to allow applications to express their requirements and constraints in their own application specific language, and the SDN controller to translate those requirements into SDN network specific language for provisioning network resources and services to satisfy the application requirements. The intent-based NBI is born from this consideration and the Open Networking Foundation (ONF) provides principles and guidelines to build such an intent-based NBI. However, these principles do not lend themselves readily to the design and practical realization of an intent-based NBI for extended classes of business-like network applications. This paper introduces a solution and its initial implementation in the form of a novel architecture for realizing the intent-based NBI. The new solution exploits the modularized and reuse features of the micro services and service oriented architectures
    corecore