41 research outputs found

    Higher-Order Subtyping with Type Intervals

    Get PDF
    Modern, statically typed programming languages provide various abstraction facilities at both the term- and type-level. Common abstraction mechanisms for types include parametric polymorphism -- a hallmark of functional languages -- and subtyping -- which is pervasive in object-oriented languages. Additionally, both kinds of languages may allow parametrized (or generic) datatype definitions in modules or classes. When several of these features are present in the same language, new and more expressive combinations arise, such as (1) bounded quantification, (2) bounded operator abstractions and (3) translucent type definitions. An example of such a language is Scala, which features all three of the aforementioned type-level constructs. This increases the expressivity of the language, but also the complexity of its type system. From a theoretical point of view, the various abstraction mechanisms have been studied through different extensions of Girard's higher-order polymorphic lambda-calculus F-omega. Higher-order subtyping and bounded polymorphism (1 and 2) have been formalized in F-omega-sub and its many variants; type definitions of various degrees of opacity (3) have been formalized through extensions of F-omega with singleton types. In this dissertation, I propose type intervals as a unifying concept for expressing (1--3) and other related constructs. In particular, I develop an extension of F-omega with interval kinds as a formal theory of higher-order subtyping with type intervals, and show how the familiar concepts of higher-order bounded quantification, bounded operator abstraction and singleton kinds can all be encoded in a semantics-preserving way using interval kinds. Going beyond the status quo, the theory is expressive enough to also cover less familiar constructs, such as lower-bounded operator abstractions and first-class, higher-order inequality constraints. I establish basic metatheoretic properties of the theory: I prove that subject reduction holds for well-kinded types w.r.t. full beta-reduction, that types and kinds are weakly normalizing, and that the theory is type safe w.r.t. its call-by-value operational reduction semantics. Key to this metatheoretic development is the use of hereditary substitution and the definition of an equivalent, canonical presentation of subtyping, which involves only normal types and kinds. The resulting metatheory is entirely syntactic, i.e. does not involve any model constructions, and has been fully mechanized in Agda. The extension of F-omega with interval kinds constitutes a stepping stone to the development of a higher-order version of the calculus of Dependent Object Types (DOT) -- the theoretical foundation of Scala's type system. In the last part of this dissertation, I briefly sketch a possible extension of the theory toward this goal and discuss some of the challenges involved in adapting the existing metatheory to that extension

    Software Engineering Laboratory Series: Collected Software Engineering Papers

    Get PDF
    The Software Engineering Laboratory (SEL) is an organization sponsored by NASA/GSFC and created to investigate the effectiveness of software engineering technologies when applied to the development of application software. The activities, findings, and recommendations of the SEL are recorded in the Software Engineering Laboratory Series, a continuing series of reports that includes this document

    A type-theoretic framework for software component synthesis

    Get PDF
    A language-agnostic approach for type-based component-oriented software synthesis is developed from the fundamental principles of abstract algebra and Combinatory Logic. It relies on an enumerative type inhabitation algorithm for Finite Combinatory Logic with Intersection Types (FCL) and a universal algebraic construction to translate terms of Combinatory Logic into any given target language. New insights are gained on the combination of semantic domains of discourse with intersection types. Long standing gaps in the algorithmic understanding of the type inhabitation question of FCL are closed. A practical implementation is developed and its applications by the author and other researchers are discussed. They include, but are not limited to, vast improvements in the context of synthesis of software product line members. An interactive theorem prover, Coq, is used to formalize and check all the theoretical results. This makes them more reusable for other developments and enhances confidence in their correctness.Es wird ein sprachunabhängiger Ansatz für die typbasierte und komponentenorientierte Synthese von Software entwickelt. Hierzu werden grundlegende Erkenntnisse über abstrakte Algebra und kombinatorische Logik verwendet. Der Ansatz beruht auf dem enumerativen Typinhabitationsproblem der endlichen kombinatorischen Logik mit Intersektionstypen, sowie einer universellen algebraischen Konstruktion, um Ergebnisterme in jede beliebe Zielsprache übersetzen zu können. Es werden neue Einblicke gewonnen, wie verschiedene semantische Domänen des Diskurses über Softwareeigenschaften miteinander verbunden werden können. Offene Fragestellungen im Zusammenhand mit der Algorithmik des Typinhabitationsproblems für Intersektionstypen werden beantwortet. Eine praktische Implementierung des Ansatzes wird entwickelt und ihre bisherigen Anwendungen durch den Autor und andere Wissenschaftler werden diskutiert. Diese beinhalten starke Verbesserungen im Zusammenhang mit der Synthese von Ausprägungen von Software Produktlinien. Ein interaktiver Theorembeweiser wir genutzt, um alle Ergebnisse der Arbeit zu formalisieren und mechanisch zu überprüfen. Dies trägt zum einen zur Wiederverwendbarkeit der theoretischen Ergebnisse in anderen Kontexten bei, und erhöht zum andern das Vertrauen in ihre Korrektheit
    corecore