483 research outputs found

    OLSR-Aware cross-layer channel access scheduling in wireless mesh networks

    Get PDF
    Ankara : The Department of Computer Engineering and the Institute of Engineering and Science of Bilkent University, 2009.Thesis (Master's) -- Bilkent University, 2009.Includes bibliographical references leaves 63-68.A wireless mesh network (WMN) is a communications network in which the nodes are organized to form a mesh topology. WMNs are expected to resolve the limitations and significantly improve the performance of wireless ad-hoc, local area, personal area, and metropolitan area networks, which is the reason that they are experiencing fast-breaking progress and deployments. WMNs typically employ spatial TDMA (STDMA) based channel access schemes which are suitable for the high traffic demands of WMNs. Current research trends focus on using loosening the strict layered network implementation in order to look for possible ways of performance improvements. In this thesis, we propose two STDMA-based cross-layer OLSR-Aware channel access scheduling schemes (one distributed, one centralized) that aim better utilizing the network capacity and increasing the overall application throughput by using OLSR-specific routing layer information in link layer scheduling. The proposed centralized algorithm provides a modification of the traditional vertex coloring algorithm while the distributed algorithm is a fully distributed pseudo-random algorithm in which each node makes decisions using local information. Proposed schemes are compared against one another and against their Non-OLSR-Aware versions via extensive ns-2 simulations. Our simulation results indicate that MAC layer can obtain OLSR-specific information with no extra control overhead and utilizing OLSR-specific information significantly improves the overall network performance both in distributed and centralized schemes. We further show that link layer algorithms that target the maximization of concurrent slot allocations do not necessarily increase the application throughput.Kaş, MirayM.S

    Local heuristic for the refinement of multi-path routing in wireless mesh networks

    Full text link
    We consider wireless mesh networks and the problem of routing end-to-end traffic over multiple paths for the same origin-destination pair with minimal interference. We introduce a heuristic for path determination with two distinguishing characteristics. First, it works by refining an extant set of paths, determined previously by a single- or multi-path routing algorithm. Second, it is totally local, in the sense that it can be run by each of the origins on information that is available no farther than the node's immediate neighborhood. We have conducted extensive computational experiments with the new heuristic, using AODV and OLSR, as well as their multi-path variants, as underlying routing methods. For two different CSMA settings (as implemented by 802.11) and one TDMA setting running a path-oriented link scheduling algorithm, we have demonstrated that the new heuristic is capable of improving the average throughput network-wide. When working from the paths generated by the multi-path routing algorithms, the heuristic is also capable to provide a more evenly distributed traffic pattern

    Throughput Optimal Flow Allocation on Multiple Paths for Random Access Wireless Multi-hop Networks

    Full text link
    In this paper we consider random access wireless multi-hop mesh networks with multi-packet reception capabilities where multiple flows are forwarded to the gateways through node disjoint paths. We address the issue of aggregate throughput-optimal flow rate allocation with bounded delay guarantees. We propose a distributed flow rate allocation scheme that formulates flow rate allocation as an optimization problem and derive the conditions for non-convexity for an illustrative topology. We also employ a simple model for the average aggregate throughput achieved by all flows that captures both intra- and inter-path interference. The proposed scheme is evaluated through NS-2 simulations. Our preliminary results are derived from a grid topology and show that the proposed flow allocation scheme slightly underestimates the average aggregate throughput observed in two simulated scenarios with two and three flows respectively. Moreover it achieves significantly higher average aggregate throughput than single path utilization in two different traffic scenarios examined.Comment: Accepted for publication at the 9th IEEE BROADBAND WIRELESS ACCESS WORKSHOP (BWA2013), IEEE Globecom 2013 Workshop

    Flow Allocation for Maximum Throughput and Bounded Delay on Multiple Disjoint Paths for Random Access Wireless Multihop Networks

    Full text link
    In this paper, we consider random access, wireless, multi-hop networks, with multi-packet reception capabilities, where multiple flows are forwarded to the gateways through node disjoint paths. We explore the issue of allocating flow on multiple paths, exhibiting both intra- and inter-path interference, in order to maximize average aggregate flow throughput (AAT) and also provide bounded packet delay. A distributed flow allocation scheme is proposed where allocation of flow on paths is formulated as an optimization problem. Through an illustrative topology it is shown that the corresponding problem is non-convex. Furthermore, a simple, but accurate model is employed for the average aggregate throughput achieved by all flows, that captures both intra- and inter-path interference through the SINR model. The proposed scheme is evaluated through Ns2 simulations of several random wireless scenarios. Simulation results reveal that, the model employed, accurately captures the AAT observed in the simulated scenarios, even when the assumption of saturated queues is removed. Simulation results also show that the proposed scheme achieves significantly higher AAT, for the vast majority of the wireless scenarios explored, than the following flow allocation schemes: one that assigns flows on paths on a round-robin fashion, one that optimally utilizes the best path only, and another one that assigns the maximum possible flow on each path. Finally, a variant of the proposed scheme is explored, where interference for each link is approximated by considering its dominant interfering nodes only.Comment: IEEE Transactions on Vehicular Technolog

    Utilization-based dynamic scheduling algorithm for wireless mesh networks

    Get PDF
    Channel access scheduling is one of the key components in the design of multihop wireless mesh networks (WMNs). This paper addresses the allocation/demand mismatch problem observed in oblivious WMN channel access scheduling schemes and proposes Utilization-Based Scheduling (UBS). UBS is a Spatial-TDMA- (STDMA-) based dynamic channel access scheduling scheme designed with the aim of increasing the application-level throughput. In UBS, each node has a weight, which is dynamically adjusted in accordance with the node's slot usage history and packet-queue occupancy. UBS is a fully distributed algorithm, where each node adjusts its own weight and makes pseudorandom transmission attempts using only the locally available information. To demonstrate the performance improvements of the dynamic weight adjustment, the performance of UBS is compared against other channel access scheduling schemes through extensive ns-2 simulations under both uniform and nonuniform traffic patterns. © 2010 Miray Kas et al
    corecore