1,183 research outputs found

    OLSR improvement for distributed traffic applications

    Get PDF
    PosterInternational audienceThis paper presents the experimental framework currently being developed at INRIA on mobile traffic applications using ad hoc communication. In this paper we propose a set of modifications to the OLSR protocol in order to adapt it to vehicle ad hoc networks. This work is the fruit of a collaboration between two INRIA research teams: HIPERCOM and IMARA. HIPERCOM is working on ad hoc routing protocols and IMARA is working on intelligent vehicles

    Predicting topology propagation messages in mobile ad hoc networks: The value of history

    Get PDF
    This research was funded by the Spanish Government under contracts TIN2016-77836-C2-1-R,TIN2016-77836-C2-2-R, and DPI2016-77415-R, and by the Generalitat de Catalunya as Consolidated ResearchGroups 2017-SGR-688 and 2017-SGR-990.The mobile ad hoc communication in highly dynamic scenarios, like urban evacuations or search-and-rescue processes, plays a key role in coordinating the activities performed by the participants. Particularly, counting on message routing enhances the communication capability among these actors. Given the high dynamism of these networks and their low bandwidth, having mechanisms to predict the network topology offers several potential advantages; e.g., to reduce the number of topology propagation messages delivered through the network, the consumption of resources in the nodes and the amount of redundant retransmissions. Most strategies reported in the literature to perform these predictions are limited to support high mobility, consume a large amount of resources or require training. In order to contribute towards addressing that challenge, this paper presents a history-based predictor (HBP), which is a prediction strategy based on the assumption that some topological changes in these networks have happened before in the past, therefore, the predictor can take advantage of these patterns following a simple and low-cost approach. The article extends a previous proposal of the authors and evaluates its impact in highly mobile scenarios through the implementation of a real predictor for the optimized link state routing (OLSR) protocol. The use of this predictor, named OLSR-HBP, shows a reduction of 40–55% of topology propagation messages compared to the regular OLSR protocol. Moreover, the use of this predictor has a low cost in terms of CPU and memory consumption, and it can also be used with other routing protocols.Peer ReviewedPostprint (published version

    Implementation of CAVENET and its usage for performance evaluation of AODV, OLSR and DYMO protocols in vehicular networks

    Get PDF
    Vehicle Ad-hoc Network (VANET) is a kind of Mobile Ad-hoc Network (MANET) that establishes wireless connection between cars. In VANETs and MANETs, the topology of the network changes very often, therefore implementation of efficient routing protocols is very important problem. In MANETs, the Random Waypoint (RW) model is used as a simulation model for generating node mobility pattern. On the other hand, in VANETs, the mobility patterns of nodes is restricted along the roads, and is affected by the movement of neighbour nodes. In this paper, we present a simulation system for VANET called CAVENET (Cellular Automaton based VEhicular NETwork). In CAVENET, the mobility patterns of nodes are generated by an 1-dimensional cellular automata. We improved CAVENET and implemented some routing protocols. We investigated the performance of the implemented routing protocols by CAVENET. The simulation results have shown that DYMO protocol has better performance than AODV and OLSR protocols.Peer ReviewedPostprint (published version

    Toward designing a quantum key distribution network simulation model

    Get PDF
    As research in quantum key distribution network technologies grows larger and more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. In this paper, we described the design of simplified simulation environment of the quantum key distribution network with multiple links and nodes. In such simulation environment, we analyzed several routing protocols in terms of the number of sent routing packets, goodput and Packet Delivery Ratio of data traffic flow using NS-3 simulator

    An analysis of the lifetime of OLSR networks

    Get PDF
    The Optimized Link State Routing (OLSR) protocol is a well-known route discovery protocol for ad-hoc networks. OLSR optimizes the flooding of link state information through the network using multipoint relays (MPRs). Only nodes selected as MPRs are responsible for forwarding control traffic. Many research papers aim to optimize the selection of MPRs with a specific purpose in mind: e.g., to minimize their number, to keep paths with high Quality of Service or to maximize the network lifetime (the time until the first node runs out of energy). In such analyzes often the effects of the network structure on the MPR selection are not taken into account. In this paper we show that the structure of the network can have a large impact on the MPR selection. In highly regular structures (such as grids) there is even no variation in the MPR sets that result from various MPR selection mechanisms. Furthermore, we study the influence of the network structure on the network lifetime problem in a setting where at regular intervals messages are broadcasted using MPRs. We introduce the ’maximum forcedness ratio’, as a key parameter of the network to describe how much variation there is in the lifetime results of various MPR selection heuristics. Although we focus our attention to OLSR, being a widely implemented protocol, on a more abstract level our results describe the structure of connected sets dominating the 2-hop neighborhood of a node
    • …
    corecore